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1. INTRODUCTION

A fundamental problem in early vision is that of inferring the three-dimensional geometry

of visible surfaces in a scene from the intensity information available in the retinal images.

It seems that advanced biological vision systems subdivide this surprisingly difficult problem,

distributing its solution over a number of subsystems or modules which contribute to the recovery

of information about surface shape. Each module specializes in the interpretation of specific classes

of image cues and, to a first approximation, it performs its task independently of the other

subsystems. Examples of primary modules which have been identified include those responsible

for stereo vision and the perception of motion.

The computational framework set forth by Marr [Marr, 1976, 1982; Marr and Poggio, 1977]

has had a strong influence in the understanding of early vision. In particular, it has provided a

paradigm which dictates that the modules initially be characterized in terms of the visual tasks

which they must perform and,'subsequently, that they be studied in terms of the computational

processes through which they perform these tasks. The various computational processes in early

vision transform symbolic representations of images into symbolic representations of surfaces

over several stages of analysis. An understanding of some of the details of these processes and

representations has evolved recently, especially at the stages closer to the image, where much

of the work has been inspired by recent advances in neuroscience ([Marr, 1976], [Marr and

Hildreth, 1980], [Marr and Poggio, 1979], [Ullman 1979a], etc.). On the other hand, our insights

at stages closer to e:.plicit surface and volumetric representations are meager. For example,

these fundamental questions remain open: first, how is the information generated by the various

modules, amalgamated into representations of surfaces (see, e.g., INishihara, 1981]) and, second,

how do such representations give rise in turn to representations of the three-dimensional properties

of objects in the scene (see, e.g., [Brooks, 1981], [Marr and Nishihara, 1978], and [Nevatia and

Binford, 19771).

The work described in this paper is part of ongoing research into the problem of obtaining

surface representations which will be of use to later processing stages in vision. In the context of

Marr's framework, our goal is to analyze the process through which the sparse information retrieved
by, say, stereopsis or analysis of motion is combined and transformed into full, retinocentric

descriptions of surface shape consistent with our perception when we look around us. In particular,

we will argue that multiple, full surface representations spanning a range of resolutions are desirable

and, indeed, show that they may be generated as an integral part of a highly-efficient, multi-level

surface reconstruction algorithm. Moreover, our approach seems sufficiently general to allow several

classes of surface shape information (such as local depth or orientation) provided by a number of

vision modules to be merged in a meaningful way.

i1



TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

1.1. Motivation of the Multi-Level Approach

To clarify our intentions, we will first examine Marr's framework for early vision in some

detail. The framework is characterized by at least three major processing stages, each of which

transforms one retinocentric representa~tion into another with the purpose of inferring, and making

explicit, relevant information about the surfaces in a scene. The first stage transforms the intensity

representations (or retinal images) into) a primary representation, called the primal sketch Marr,

1976]. Changes in the physical properties of surfaces almost always give rise to intensity changes

in the images, and it is at the level of the primal sketch that the locations of these changes are

made explicit. In the second processing stage, specialized processes, such as those concerned with

stereo and shape from motion, infer information about the shape of surfaces from the contents of

the primal sketch. Since inferences can typically be made only at those locations which have been

marked in the pimal sketch, the infc.rmation generated is sparse, and it is collected into sparse

representations of surface shape that are referred to as the raw 21-D sketch. The final stage is

one of full surface reconstruction in which the sparse representations are transformed into a full

2.1-D sketch containing explicit information about surface shape at all points in the scene.

The goal of the first processing stage is the detection of intensity changes in the image.

Recently, Marr and Hildreth [Marr and Hildreth, 1980; Hildreth, 1980] proposed a theory of edge

detection which was inspired by existing neurophysiological evidence and certain mathematical

issues. An important aspect of this theory is that intensity changes in the images must be

isolated at different scales of resolution. Indeed, there is evidence that the human visual system

detects intensity changes over a range of resolutions through the use of up to five independent,

spatial-frequency-tuned, bandpass channels [Campbell and Robson, 1968; Wilson and Giese, 1977;

Wilson and Bergen, 1979; Marr, Poggio, and Hildreth, 1980]. The existence of these independent

primal sketch representations is a crucial factor which contributes to the success of some later

computations such as stereopsis, as modeled by the Marr-Poggio theory of stereo vision [Marr and

Poggio, 1979] (see also [Mayhew and Frisby, 1980, 19811). According to this model, the bandpass

nature of the channels leads to an almost trivial solution to the stereo correspondence problem

within t:he disparity range of each channel. Detailed depth information over a wide disparity range

is obtained through a process by which the coarser channels control vergence eye movements

that bring the finer channels into alignment (general studies of vergence eye movements include

[Riggs and Niehl, 1960] and [Rashbass and Westheimer, 19611). On the other hand, computations

such as motion correspondence [Ullman, 1979a], whose function may not depend critically on

the existence of multiple representations, may nevertheless be operative at each of the levels. It

seems likely in any case that multiple sparse representations of surface shape that span a range

of resolutions are generated by most of these modules.

In the context of stereopsis, Grimson (1981a, 1982a] pioneered the mathematical theory

of the subsequent visual surface reconstruction process which transforms the sparse surface

2
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Figure i. The stereo module with single-level surface reconstruction.
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descriptions into full ones. He proposed that, before reconstruction begins, the multiple, sparse

depth representations output through the different bandpass channels be combined into a single

raw 2&-D sketch in a way which maintains consistency across all scales. The raw 2J-D sketch then

contains sparse depth information at the finest resolution possible. Next, a single reconstruction

process operating at this finest level generates a unique full 2 -D sketch representing depth

information at high resolution. The steps are illustrated'in Figure 1, in which only three bandpaa

channels are shown for simplicity.
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A single full surface representation at the finest resolution possible certainly captures all

of the information provided by the stereo module and it should, in principle, be sufficient input

to later tasks. Unfortunately, a number of technical problems arise with this simple approach.

First, in collapsing the multiple depth representations into one raw 2 -D sketch, information

potentially useful in later processing stages which are concerned with object-centered surface

descriptions, 3-D models of objects, and object recognition has been discarded prematurely. It

now seems likely that in order for some of these later stages to succeed and work efficiently,

surface representations at multiple scales will be necessary, just as they are necessary at earlier

stages such as stereopsis. In accordance with Marr's principle of least commitment [Marr, 1976], it

would be wasteful to discard information, prior to surface reconstruction, which may have to be

regenerated later. A second, and more immediately serious problem is a consequence of the great

bulk of incoming information within the large raw 21-D sketch which must be processed at the

finest resolution. Biologically feasible surface reconstruction algorithms such as those developed

by Grimson are extremely inefficient at generating full surface descriptions when faced with such

large representations. Roughly speaking, the primary reason for this inefficiency is due to the

local nature of the algorithms in question.

The above problems may be avoided if the sparse representations are not collapsed into
a single fine representation. Instead, multiple full surface representations spanning a range of

resoluti(ns ought to be generated by the reconstruction process itself and made available to

processing stages beyond. The multi-level surface reconstruction algorithm which we will develop

in this paper accomplishes precisely this. Because the algorithm exploits information available at

coarser resolutions, its speed efficiency is dramatically superior to that of single level reconstruction

schemes. Order-of- magnitude improvements are typically observed for surfaces reconstructed from

information provided by stereopsis. On the other hand, the expense in space in maintaining all
the coarser representations is very worthwhile since it turns out to be only a fraction of that

required to maintain the finest one.

Figure 2 illustrates the multi-level surface reconstruction scheme and its incorporation into

stereopsis. A fundamental point to realize about the multi-level approach in general is that
4 information about surface depth, or for that matter surface orientation, is provided in each of

the channels (i.e., sparse representations) by the various vision modules and, as will be shown,
contributes in an optimal way to the generation of the hierarchy of full surface representations.

The multi-level scheme involves both intra-level processes which propagate information across a

single representation, as well as inter-level processes which communicate between representations.

The inter-level processes are further classified into those which transfer information from coarser

levels to finer ones, and those which transfer information from finer levels to coarser ones. At

this point, we emphasize that multiple representations of consistent accuracy can be achieved

only if such a bi-directional flow of information is allowed to take place between the levels. This

statement will be substantiated rigorously in a later section.

4
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Figure 2. Multi-level approach to surface reconstniction.
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in terms of the original computational goal. If the performance is consistent with psychological

evidence, the algorithm may be thought of as constituting an existence proof that the theory

adequately models the human vision system. This is what we are ultimately striving for in our

study of the surface reconstruction problem.

1.2. Overview

In this paper, we lay down the mathematical foundations of a multi-level approach to visual

surface reconstruction, primarily in the context of stereo vision. With the help of a physical

model, the basic surface approximation problem is given an intuitive interpretstion. Although it is

in general a nontrivial matter to solve this problem, our model suggests the application of potent

methods which have arisen out of classical mathematical physics - the calculus of variations,

optimal approximation theory, and functional analysis. Aspects of the above formalisms are

employed to render our problem amenable to solution by numerical techniques. The development

is as follows.

0 In Chapter 2, visual surface reconstruction is cast as an optimal approximation problem

which involves finding the equilibrium position of a thin flexible plate undergoing bending.

The problem is posed formally as a variational principle which we propose to solve by first

converting it to discrete form using the finite element method.

0 In Chapter 3, we prepare the way for applying this discrete approximation method by

finding a set of minimal conditions for our continuous problem to have a unique solution.

We show that these requirements will almost always be satisfied in practice, so that we can

consider our surface approximation problem to be well-posed, and can proceed to obtain the

solution.

* In Chapter 4, we turn to the task of converting our continuous problem into discrete

form. To do so, we define a simple nonconforming finite element which will constitute the

* Ibasis of our local, piecewise continuous representation of surfaces. Because the element is

nonconforming, we first must prove that it leads to unique discrete approximations, and

that these approximations converge to the exact solution as the elements decrease in size.

Having done this, we derive the discrete surface approximation problem as a large system

- iof linear equations.

0 In Chapter 5, we face the task of solving this linear system efficiently in a biologically-feasible

way, and it is here that we motivate the multi-level approach for obtaining the solution.

The approach involves setting up a hierarchy of discrete surface approximation problems

which span a range of resolutions and exploit the information available at each scale, and

subsequently invoking a multi-level algorithm to solve them simultaneously. We demonstrate

the efficient performance of the multi-level surface reconstruction algorithm on constraints

6
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from stereopsis, and demonstrate that it generates a useful hierarchy of accurate surface

representations.

* In Chapter 6, we reexamine our surface reconstruction problem and show that it is a special

case within a general class of optimal interpolation problems involving arbitrary degrees of

continuity, in any number of dimensions. These general problems involve the minimisation

of functionals which possess a number of invariance properties making them attractive for

application to problems in early vision whose solutions require the iterative propagation of

smoothness constraints across retinocentric representations.

* In Chapter 7, we conclude by discussing the overall implications of our approach to issues

concerning the isolation of depth discontinuities, and the incorporation of other sources of

information such as surface orientation. We discuss possible solutions to these problems in

view of our finite element representation of surfaces and the multi-level surface reconstruction

algorithm.

0 For convenience, in two of the appendices, we cover the relevant mathematical background

of the finite element method and the iterative solution of large linear systems.

2. THE MOST CONSISTENT SURFACE

The sparse information about surface shape retrieved by the various vision modules is in

general underconstraining. That is to say, it is insufficient to compel a unique inference of the

physical properties of the surfaces in the scene. Yet, even when presented with impoverished

stimuli (such as random dot stereograms [Julesz, 1971] or kinetic depth effect displays [Wallach

and O'Connell, 1953; Wallach, 1959; Johansson, 1975; Ullman, 1979a; etc.]), the human visual

system routinely arrives at unique interpretations and our typical perception is a stable one of

full surfaces in depth. Clearly, the visual system must invoke certain assumptions which provide

enough additional constraint to allow a unique full surface representation to be computed from

the sparse information provided. However, these additional assumptions must be plausible in that

they reflect certain domain-dependent expectations. For example, in stereo vision, the sparse
A information takes the form of depth constraints which embody measurements of the distances

from the viewer to the surfaces of objects in the scene. The additional assumptions should then

be based on general expectations about physical properties of surfaces in the visual world, as well

as aspects of the optical and computational processes taking part in the generation of the depth

constraints.

Grimson [1981a] explored a number of issues along these lines. Qualitatively, his thesis is

as follows. A surface in the scene which. varies radically in shape usually gives rise to intensity

changes which are marked in the primal sketches as zero-crostings of the Laplacian of the

Gaussian-convolved images (V2 G * I - see [Marr and Hildreth, 1980; Hildreth, 1980]). Moreover,

7
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it is only at the locations of zero-crossings that the Marr-Poggio stereo algorithm can generate

measurements of the distance to the surface, in the form of explicit depth constraints. Therefore,

the surface cannot in general be varying radically in depth between the constraints to which it

gave rise. By introducing this additional surface smoothness assumption, the goal of accurately

reconstructing the shape of visible surfaces and thereby computing full surface representations

consistent. with our perception is attainable in principle. A theoretical proof of this statement lies

in the domain of mathematics. In the next section, we take the first step by rigorously formulating

the surface reconstruction problem as an optimal approximation problem in which the smoothness

assumption has a clear intuitive interpretation, and which eventually leads to efficient multi-level

algorithms for its solution.

2.1. A Physical Interpretation - The Bending of a Thin Plate

Visual surface reconstruction can be characterized formally as a constrained, optimal

approximation problem in two dimensions. In the context of stereo vision, where constraints

embody depth measurements to surfaces in the scene, the goal is to reconstruct, as accurately as

possible, the shape of the surface which gave rise to these measurements. Of course, it is necessary

that we be able to deal with the complication arising from arbitrarily-p'laced constraints since, as

has been argued, constraints of this type are generated naturally by stereopsis and other vision

modules. More rigorously, the problem can be stated as follows: given a finite set of arbitrarily

located distinct point constraints on a plane, each constraint having a real scalar value associated

with it, find the unique optimal function of two variables which is most consistent with these

constraints. Our notion of consistency will be defined shortly. We consider the solution to our

problem to be a full surface representation in that it makes explicit our best estimate of the

distance to every visible point on the surface in the scene.

The constraints provided by the stereo computation are never completely reliable. Errors due

to noise, and errors in matching corresponding %ero-crossings are bound to occur. This suggests

that we should not try to interpolate the given data exactly because a few 'bad" constraints

can have a detrimental effect on the shape of the recovered surface. Relaxing the interpolation

requirement turns our problem into one of surface approximation in which we would like to

maintain control over how closely the surface fits tbe data.

By thinking in terms of an optimal surface, we imply the choice of a suitable criterion that

will allow us to measure the optimality of admissible functions. A suitable criterion for measuring

the optimality of surfaces in the context of surface approximation in stereopsis translates into

a preciise mathematical statement which captures intuitive notions about the smoothness of

* I admissible surfaces as well as their closeness of fit to the known depth constraints. Perhaps the

intuitively clearest treatment of our problem is in terms of a physical model. Consider a planar

region 11, the region within which we wish to obtain an optimal approximating surface most

consistent with a finite set of sparse constraints. Let us imagine that the constraints constitute a
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figure 3. The physical model for surface approximation.

set of vertical pins scattered inside fl, the height of an individual pin being related to the distance

from the viewer to the surface in the scene. Suppose that we take a thin flexible plate of elastic

material that is planar in the absence of external forces, and constrain it to pass near the tips of

the pins by attaching ideal springs between the pin tips and the surface of the plate as shown in

Figure 3. It is not difficult to imagine the equilibrium position of the plate as a function of the

various pin heights.

Intuitively, the equilibrium position of the thin plate is a "fair" approximating surface in

that it will exhibit a sufficient amount of smoothness between the constraints. Moreover, on

quantitative grounds, there is evidence to suggest that such a surface is indeed an optimal one in

terms of the imaging process [Grimson, 1982b]. In any case, we have a reasonable physical model

for the optimal approximating surfaces and, moreover, this model will suggest good strategies for

solving our problem.

We emphasize however that the appropriateness of the model depends on two important

issues. The first involves ensuring that a unique solution exists, and the second is to guarantee

that the solution is meaningful in view of the constraints. Firstly, we realize that the plate-spring

system will be unstable for certain pin configurations. If we have but a single pin, then a stable

equilibrium does not exist, as the plate has two unconstrained degrees of freedom (rotation about

the axis of the pin is excluded). A similar degenerate situation arises for the case of any number

of pins arranged linearly, the plate then having one unconstrained degree of freedom. Clearly

i,9
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at least three noncollinearly arranged pins are required to assure that a unique state of stable

equilibrium exists. Secondly, a reasonable choice must be made for the stiffness of the springs.

If the springs are too strong in relation to the rigidity of the plate material, then a pin whose

height deviates significantly from that of its neighbors (i.e. an erroneous constraint) will place an

abnormally large amount of strain on the plate locally and have undesirable effects on the shape

of the surface. On the other hand, if the springs are too weak, the intrinsic rigidity of the plate

can overwhelm them and the plate will remain nearly planar over large variations in the height

of the pins. In the limit of a rigid plate, the resulting planar, least-squares approximation would

be meaningless in that the solution does not in genera lie close to constraints other than those

arising from nearly flat surfaces.

We will now proceed to a mathematical characterization of the above physical model. To do

so, we apply the well-known minimum potential energy principle from classical mechanics, which

states that the potential energy of a physical system in a state of stable equilibrium is at a local

minimum. For the model, the potential energy in question is that due to deformation of the plate

and springs, as well as the energy imparted by any externally applied forces. In this sense then,

the surface we seek is one of minimal energy.

First, consider the plate. It is known (see, e.g., [Courant and Hilbert 1953, pg. 250], [Landau

and Lifshitz, 19701) that the potential energy of a thin plate under deformation is given by an

integral of a quadratic form in the principle curvatures of the plate. If the principle curvatures

of the deformed plate are denoted by r. and r2, the potential energy density is given by an

expression of the form

A ( 2 + PC) + B cI C2= 2A K I2 -- (A - B r 2
2 1 2 2

where A and B are constants determined by the plate material. The expression (I -+ r 2) is the

first or mean curvature and r I 2 is the second or Gaussian curvature of the plate's surface (see,

e.g., [Hilbert and Cohn-Vossen, 1952]).

Let the function v(x, y) denote the deflection of the plate normal to the region fl which can

be taken to lie in the X-Y plane. Assuming that the deflection function and its partial derivatives,

,,zVy.... are small, it can be shown (see e.g. [Rektorys, 1969, pg. 368]) that

I + PC2  1 2
2- =a i -AV, KIK2 =Z Vz3 zt'yS - lJXY)2 2

where L = + denotes the Laplacian operator. Thus, the potential energy density can be

written in the following forms:

10
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el _(AV,)2 - 1 o)(V2 "VY, 2 t,2,, -_ ( -
I (v 22 +s 2
2 YJ2~ ~ + o(v"VY, - VXY)(1

- )2 ( - C,)(.l. + 2V2 + 2

apart from a multiplicative constant which depends on the physical properties of the elastic

material of the plate, and which has been set to unity without loss of generality. The constant a,

called the Poisson ratio, measures the change in width as the material is stretched lengthwise. 1

The desired potential energy of deformation is obtained by integrating the energy density over

the domain in question, and is given by

Jf~v 2() -(1- 7(1zuId-v dx dy.

To the potential energy of deformation, we must add the potential energy due to any

external forces which may be present. The energy due to a force density g(x, y) applied to the

surface of the plate (such as the effect of gravity) is given by

C2(V) - -Jf gvdxdy.

External forces and bending moments may also be applied around the boundary an) of fl. The

energy due to a force density p(s) on the boundary (s denotes arc length along the boundary) is

13 (V fe p(,Y)t d8,

while the energy due to bending moments applied around the boundary is

"4(V)= -- m(s) ds,

where rn(s) is the density of applied bending moments normal to the curve and A denotes the

directional derivative along the outward normal to 41.

Finally, we must account for the potential energy of deformation of the springs. Let C
denote the set of points in (1 at which the imaginary pins are located; that is, the sparse set of

locations at which the surface is constrained. Furthermore, denote the height of the pin (the value

of the constraint) by real scalars c( 1.,,,) and the stiffness of the spring attached to it (influence

of the constraint) by positive constants , for all (Xi, y,) E C . According to Hooke's law for

an ideal spring, the total potential energy of deformation in the springs is given by

'From the last expression in (1), it is apparent that the potential energy density may be considered
to be a convex combination with parameter a of the square of the Laplacian ard a quadratic term in
second-order partial derivatives of the deflection function, (42. + 2v2, + vs,). This fact will be used in
a subsequent discussion.
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2(zs,,YJ EC

The equilibrium state of the mechanical system can be obtained as the solution to the

following minimization problem which is referred to as a variational principle:

The deflection of the plate at equilibrium is that function u from a set V of admissible

functions v, for which the total pot;e'tal .. a

t(V) =6 t(V) + C2 (V) + E3 (V) + 64 (V) + 65 (V) (2)

is minimal.

Thus, quantitatively, the "most consistent" surface which we seek is the one having minimal

energy 6.

The visual surface approximation problem has been posed, in integral form, as a variational

principle which is quadratic in that it involves terms that are at most quadratic in v and its

derivatives. Through the formalism ol the calculus of variations one can express the necessary
condition for the minimum as the Euler-Lagrange equation which in this case can be shown to

be a linear, self-adjoint, partial differential equation. Much of classical mathematical physics is
based on this duality, and it provides numerous techniques for solving our problem, those which

are directed towards the variational principle, as well as those which are directed towards its
Euler-Lagrange equation.

Whatever the strategy, although it is conceivable that the exact analytical solution u

could be derived, it is normally impossible to do so for all but the simplest-shaped domains fl.
Consequently, we are led to consider a numerical approach in which we somehow convert our
continuous problem into a discrete problem whose numerical solution closely approximates the

exact continuous solution u. We propose to employ what is probably the most potent tool for

obtaining discrete approximations currently available - the finite element method. The method is
applied to the variational principle directly and, because the variational principle is quadratic, the

resulting discrete problem will take the particularly simple form of a linear system of algebraic
equations. The main advantage of the finite element method is its generality. In the context
of our Burface approximation problem, it can be applied over domains fl of complicated shape,
and it is not limited to uniform discretizations of these domains. The importance of the latter

property in the context of vision is evident when one considers, for example, the nonuniform
structure of the retina where it is known that resolution decreases approximately linearly with

eccentricity (see [Wilson and Giese, 1977] and [Wilson and Bergen, 1979] for a quantitative model

of this phenomenon in terms of the spatial-frequency channels in early vision). Moreover, the finite

element method leads to linear systems which are readily solvable in a parallel, iterative fashion

by a sparsely-interconnected network of simple processors, a mechanism which seems prevalent in

early vision.

12
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For several reasons, we have avoided the alternate route of using the well-known finite

difference method to discretize the associated Euler-Lagrange equations (see, e.g., [Collats, 19661,

[Forsythe and Wasow, 19601, [Smith, 19771). The finite difference method is much more restrictive

in that it practically limits us to uniform discretizations, the underlying convergence theory is

much less well developed and, perhaps most importantly, it becomes very difficult to discretise

the natural boundary conditions associated with our surface approximation problem, a task which

is done trivially by the finite element method.

The mathematical background of the finite element method that is of relevance to our

problem is included in Appendix A for convenience. The appendix introduces the required theory

and lists the fundamental theorems which we will invoke in applying the method to the task

at hand. The process will consist of several steps. First we pose the variational principle in an

abstract form that is the basis of the mathematical machinery presented in Appendix A. Next,

we determine formally the requirements on the boundary conditions that must be satisfied to

ensure that our variational principle is well-posed; i.e., has a unique solution. Only then can we

proceed to apply the finite element method to approximate the solution.

3. THE VARIATIONAL PRINCIPLE

In this chapter we analyze the continuous variational principle which embodies our visual

surface approximation problem, in preparation for the application of the finite element method.

In view of the formalism presented in Appendix A, our first goal is to state the variational

principle in the abstract form; that is, to isolate the energy inner product which characterises our

minimization problem. We then derive the associated Euler-Lagrange equation and, in the process,

consider the various forms of boundary conditions that can be imposed. Finally, we choose the

appropriate form of these conditions in view of our visual surface approximation problem and

obtain formally the minimum requirements for our variational principle to be well-posed.

3.1. The Energy Inner Product

According to equation (2.2), our variational principle asserting that the equilibrium state of

the thin plate is a minimal-energy configuration, may be stated mathematically as the minimisation

of the expression

CM /j )2-(1- 0)(V.1tVY, - V2 )- gv dtdy

- p(s)ti ds - J rn(s)! d +- j [vz,- (1
(zj., ,)ECfa n fa n (n 2 [~j i (iV

Here, we have assumed that the spring stiffnesses (,) = p for all (zi, Yi) E C. The admissible

space V for our variational principle is in general a subspace of the second-order Sobolev space
)12 (fl) over the region f0 (refer to the discussion in Appendix A). If u E V minimises C, then

131
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t(u) < t(u+ev) for any v E V. Therefore, to obtain the necessary condition for the minimum, we

substitute for v the small variation u + ev about u and equate to sero the derivative with respect

to e for e = 0. Equivalently, we may perform the variation using the rules of differentiation:

oe(u) = f fnAu6(AU) - (1 - a)IU,.6(u) + UY6(U.) - 2u.,6(u,,,)j - g6udz dy

f p<a)6u ds -] m(B) (u) d +p E [u(li , Ye) - C(ZiYi)]6u(z,, ii,)(za ,.)EC

Since variation commutes with differentiation, 6(Au) = A(6u), 6(P) = A(6u), 6(uY,) = (6u),

etc. If we now let v = 6u, and set 6C = 0, we obtain

IfJ AuAV - (1 - ffj(u2 VJ1  + UY WZ - 2u .,,Yv,) - g d d 2

-fjp(s)vds- J rn(s)8" ds+1 E [ut~a)- c(Z.,Y.)]V(Z,,YJ) (2an n ((2,y)ec

Equations (1) and (2) may be cast in our abstract variational formulation of Appendix A.

The key is in identifying the energy inner product as the bilinear form

a(u, u) = AuAV - ( - o)(uzuVy' + UYYVX - 2uy )dz d1- j u(z,,i')u(z,,y,),
(Zi,Y.)EC~(3)

and in writing the linear form as

=1 gv dxd'+J p(s)v de j av~s ds
n (Z,,Yi)EC

Clearly then, (1) asserts that we are to minimize the quadratic functional e() = a(u ) - f(V),

as required in the definition of the abstract variational principle (Definition A.1). On the other

hand, (2) which expresses the necessary condition for the vanishing of the first variation may be

written as a(u, v) = f(v), as expected from the discussion leading up to the variational equation

(A.10).

Having obtained expressions for the bilinear and linear forms, we can proceed to bring the

finite element method to bear on the problem. Before doing so, however, it is imperative that

we carry the analysis further so that we can express the necessary condition for a minimum

as a partial differential equation, explore the issue of boundary conditions, and ensure that the

problem is well-posed.

3.2. The Euler-Lagrange Equation and Boundary Conditions

For the duration of this section, we will ignore the summation term arising from the (spring)

constraints, since its presence will complicate the notation while making no sgnificant contribution

to the discussion. First, we Will transform the energy inner product a(., .) given in (3) using

14
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integration by parts in two dimensions; i.e. Green's theorem. Let a be the outward normal vector

to onl, t be the usual tangent vector along anl, and I& and & denote partial differentiation

along the normal and tangent respectively. Assuming that us is fourth-order differentiable, Green's

identity (see, e.g., [Ciarlet, 1978, pg. 14], (Rektorys, 1969])

J uAv - vAu dz dy= a ud
f fn L u 5n O n

may be used to transform the term AuAv arising from the mean curvature of the surface:

JfAuAvdxd fjAudx dy + tAu do- Lf v (Au) ds, (5)

where A'u = AAu = u.. + 2u.... + U,,Y On the other hand, the Gaussian curvature term

can be transformed using the identity [Ciarlet, 1978, pg. 15]

JjU,,Vyy~ + UYYV1 . - 2u,,,V 2 , dx d11 = J *- - ds-f --- ds. (6)f n an j2 n "n Onat at

If the boundary is sufficiently smooth, it can be shown (see [Rektorys, 1980, pp. 268-269]) that

the second boundary integral can be written as

J 92U CIt fd( 092 U)V 8
y t d8= J k )d (7)

Substituting equations (5)-(7) into (3) (and ignoring the constraint term), we obtain

a(u, v) = fVA2 u dx dy + L P(u)v ds + M(u) a da,

where

a 2 is

M(u) =Au -(1 -or t

Thus, the necessary condition for the minimum (2) becomes

fj(A2U~ g)Vdx4,+ j [P(u) -p(s)Iv d+ jMu -msj o 0

Now, since the above equation must hold and ince v and ft are arbitrary on the closed

region (I, we must have

A 2 U =g in . (8)

This is the fourth-order, linear, self- adjoint Euler-Lagrange equation that governs the small

deflection of a thin plate at equilibrium, and it is satisfied by u. inside 0 regardless of the

boundary conditions on an. In its homogeneous form A2U = 0, it is called the bilsarmnic

equation. Furthermore, us must satisfy the natural boundary conditiew

15
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P(u) = p(s) and M(u) m(s) on OfM. (9)

According to (6), the integral over fl of the Gaussian curvature approximation (V"V,, - 2v2)

has no effect whatsoever on the Euler-Lagrange equation, but contributes only to the boundary

conditions. 2 This reflects the fact that the Gaussian curvature of a surface patch is invariant as the

surface is subjected to arbitrary bending, and that its average value over the patch depends only

on the tangent planes of the surface around the periphery of the patch [Hilbert and Cohn-Vossen,

1952, pp. 193-204). This invariance property of the Gaussian curvature renders it inappropriate as

a measure of surface consistency. For example, it cannot distinguish two developable surfaces such

as a wildly undulating sinusoidal surface and a planar surface, both of which are cylinders and

therefore have sero Gaussian curvature everywhere. On the other hand, the mean curvature does

not in general remain invariant under bending and therefore plays a vital role in our energy inner

product. This is evident from equation (1) - no value of o can make (Av) 2, which approximates

the mean curvature, vanish.8

Another consequence of the necessary condition for the minimum is that the form of the

natural boundary conditions satisfied by u are determined by any essential boundary conditions

which may be imposed on v. In general, we can impose up to two essential boundary conditions,

one on v and the other on Sk. First, consider the case of a simply supported plate where the

essential boundary condition v = 0 is imposed on l but g is left unconstrained. The solution

u must then still satisfy the second condition in (9). We therefore have the Neumann boundary

conditions

u=0, M(u)=m(s) on nfl,

and, moreover, the first contour integral in (1) vanishes.

Next, suppose that we also set = 0 on Of). Then,

l8u
u y- = 0 on 8fl, (10)

On

which are the Dirichlet boundary conditions for the clamped plate. In this case, both contour

integrals in (1) vanish and, moreover, a is arbitrary since it does not appear in the Euler-Lagrange

equation (8), but only in the natural boundary conditions (9) which have now been replaced

by (10). We can therefore greatly simplify the variational integral. In particular, the functional

minimization problems involving

2Expreisions possessing this property are called divergence ezpressions [Courant and Hilbert, 1953].
'Brady and Horn [1981, pg. 29] state that "the choice of which performance index to use is reduced

to the square Laplacian, the quadratic variation, and linear combinations of them". We stress that one
should be careful not to choose that linear combination which results in a divergence expression (the
Gaussian curvature) and therefore hr.i an identically sere Euler-Lagrange equation. Recall from equation
(2.1) that the small-deflecLion theory of the thin plate allows only a convex combination so, fortunately,
it is free from danger. in this respect.

16
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(u)=ffn(Au) .gvdxdy, for o = 1,

and

f(v) = fj (v2. + 2v,, + V2') - gU dZ dy, for o = 0,

are equivalent in the Dirichlet case.

Finally, consider the case of a free boundary; that is, when the externally imposed force p(a)

and moment m(a) on the boundary are zero. Then, there are no constraints on v but, according

to (9), u must satisfy

P(u) = M(u)= 0 on al.

These are the natural boundary conditions satisfied by the solution for the case of the free plate.

Once again, the contour integrals in (1) vanish and the energy functional takes the simple form

C() = f / (AV)2 -(1- o)(v 1 7 v,, - v-,) - gv dx dy.

In general, the admissible space V is the subspace of the Sobolev space N'(f0) which satisfies

the essential boundary conditions imposed on the plate. If, for example, a portion of the edge

of the plate is simply supported, V wsill consist of functions which satisfy the essential condition

v = 0 on that portion of afl. If part of the edge of the plate is clamped, then v = 0 on

that part of afl. On the other hand, if part of the edge is free, then no constraints are imposed

on v over that portion of the boundary and, in the case of the free plate, V = ) 2(fl). Of course,

the plate cannot be "too free" on (1, because then the physical system cannot achieve stable

equilibrium and a unique solution would not exist. Precisely how much freedom can be allowed

will be established formally in the next section.

3.3. When is the Problem Well-Posed?

Turning to our visual surface approximation problem, we should at this point choose the

appropriate form of boundary conditions on 4f1. Since the only information about the surface

that is provided by the stereo module, for example, is embodied in the sparse constraints, the

strategy of least commitment is to "assume nothing" about the boundaries of the surface. In

terms of our plate problem, this means that we should impose no essential boundary conditions

on the plate; that is, we solve the free plate problem whose admissible space V - )(2 (fl).

If the boundary of the plate is free, it is clear that the constraints will play a critical role in

providing a unique state of stable equilibrium. Our goal in this section is to specify the existence

and uniqueness requirements mathematically as conditions under which the surface approximation

problem is well-posed. To do this, we will invoke Theorem A.1, and satisfy its conditions by

proving the following two propositions.

17



TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

Proposition 1. The energy inner product a(., .) is symmetric.

Proof. a(u, v) = a(v, u) is evident by inspection of equation (3). |

Proposition 2. If the set of constraints C contains (at least) three noncollinear points, then a(-, .)

is V-elliptic for 0 < o < 1.

Proof. We want to show that there exists an a > 0 such that a(v, V) allUI1 2, for all v E V.

To do so, it is sufficient to show that a(v, v) = 0 only if v =- 0. We rewrite a(, v) as

ac,,, I)= fZC,(,,)2 + + 2v+, + v,,"),dzd, P

Now, Av = 0 only if v is a harmonic function, while (M, + 2v2 -v2) = 0 only i i is a first

degree polynomial (as can easily be shown by integration), which is a subclass of the harmonic

functions. Thus, the integral is > 0 for 0 < a < 1 and it is zero only if v is a linear function

over fl. On the other hand, since 0 is posi' e by definition the sum is also > 0 and it is sero

only if v(z,, Y,) = 0 for all (zi, Y,) E C. Therefore, if C contains three noncollinear points, then

a(v, v) = 0 only if v = 0, implying that x, .) is '"-eiiptic. I

By Propositions 1 and 2 and Theore-. ., we are assured that the continuous approximation

problem is well-posed if 0 < a < 1 .,Id the set of constraints includes at least three noncollinear

points. The condition on the constraintr is not unexpected in view of the arguments made in

Section 2.1. Physically speaking, all unconstrained degrees of freedom of the* plate must be

precluded, and three noncollinear constraints is clearly the minimum requirement for this to be the

case. In application to natural images, the stereo algorithm will almost always generate at least

three noncollinear points, so we can, for all practical purposes, consider our surface approximation

problem to be well-posed so long as 0 < a < 1.

4. OBTAINING THE DISCRETE PROBLEM

So far, we have been dealing with the continuous form of our surface approximation problem.

We formulated it in the required abstract form, selected appropriate boundary conditions, and

showed that it is well-posed in practice. In this chapter, we face the task of applying the finite

element method to transform the variational principle into an appropriate discrete problem whose

discrete solution can be computed fairly easily. Our piecewise continuous representation of surfaces

will be based on a very simple finite element which is, howr-,-er, nonconforming. This will force

us to introduce an approximate variational principle and to show that it has a unique solution

which converges to the exact solution as the elements shrink in size. Only then can we undertake

the next step which is to derive the discrete problem explicitly as a linear system of algebraic

equations.

is
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4.1. Conforming vs Nonconforming Methods

Our well-posed variational principle satisfies all the necessary conditions to guarantee that

any conforming finite element method applied to it will converge. In principle, it is straightforward

to apply a conforming finite element method according to the steps in Appendix A. We generate

a finite element space Sh which is a aubspace of our admissible space V, and apply the Rits

method to find that function uh E Sh which optimally approximates the exact solution u E V.

The approximation is optimal in the sense that it is closest to u with respect to the strain

energy norm a(-, .)f, or equivalently, that the strain energy in the error a(u - uh, U - u") is

minimal. To construct a conforming finite element subspace, we must satisfy the completeness and

conformity conditions given in Section A.4. Since the energy inner product a(., .) contains partial

derivatives of order m = 2, the completeness condition requires that the local polynomial defined

within each element subdomain E must be at least a quadratic; PF D 112(E) for all E E Th

(17"(E) denotes the met of nth degree polynomials over E). On the other hand, the conformity

condition states that the polynomials must be of class C1 across inter-element boundaries, and

consequently Sh C C'(fl) globally. In satisfying both conditions, we are guaranteed that the finite

element space is a subspace of the admissible space V, and that there exists a unique optimal

approximation uh E Sh.

If fl is a polygonal region, elements with straight sides will suffice. A number of such elements

which are conforming for m = 2 (i.e., problems characterized by fourth-order Euler-Lagrange

equations) are available. Examples are the Argy/ris triangle, Bell triangle, and Bogner-Foz-Schmidt

rectangle (see, e.g., Ciarlet, 1978], [Strang and Fix, 1973], [Zienkiewics, 1977] and the

references therein). Unfortunately, we can expect serious computational difficulties to arise in the

implementation of these conforming methods. The basic source of difficulty is the requirement

of continuity of first partial derivatives across inter-element boundaries - either the structure

of the conforming element spaces PE becomes complicated, or their dimension is large. For our

problem, the simplest conforming polynomial element is the Bell triangle, in which we have a

quintic polynomial uniquely determined by 18 nodal variables consisting of the approximation v h ,

as well as its first and second partial derivatives at the three vertices.

* j As is described in Appendix A, the dimensions of the finite element space can be reduced by

the use of nonconforming elements. A popular nonconforming element for fourth-order problems

is Adini's rectangle, whose local function pE is a 12 degree-of-freedom polynomial with nodal

variables being the approximating function, as well as its first partial derivatives at the four

vertices. The element is nonconforming since it is only of class CO across inter-element boundaries.

Many other nonconforming elements have been developed for fourth-order problems (see, e.g.,

[Ciarlet, 1978], [Strang and Fix, 1973], [Zienkiewics, 1977]).

For this initial implementation, we have chosen to reduce the dimensions of the finite element

space as much as possible by defining what for our problem is probably the simplest successful
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nonconforming element imaginable. This element will be defined next.

4.2. A Simple Nonconforming Element

We will define a finite element space by the standard procedure outlined in Section A.4.

Suppose that (1 is rectangular, and consider a uniform triangulation Th of fl into identical square

elements E, where the fundamental length h is the length of a side of E. By definition, we require
that UEET,, E =-- rl and that the elements be adjacent and overlap along their sides. A point in !

is a node of the triangulation if it is a vertex of an elemental square and, as usual, we consider

the elements to be inter-connected at the nodes. The nodal variables, will simply be the node

displacements; i.e., the values of the function vh C Sh at the nodes.

The next step is to define a space pE of polynomials pE over the element domain. The

polynomials must satisfy the completeness condition which states that 112 C pE, since the energy

inner product contains derivatives of order m == 2. This is the requirement that the polynomials

be able to reproduce exactly all states of constant strain which, in this case, are all polynomials

up to degree two. We will satisfy this requirement by choosing PE to be the six-dimensional

space of full second degree polynomials pE: E P-. R such that

pE(z, y) = az2 + by2 + czy + dz +ey f, (1)

where the six real parameters a to f are to be determined.

We must ensure that pE is uniquely specified within E in terms of the node displacements.

To do so, we isolate a representative element and set the oribin of the X-Y coordinate system

at its lower left hand corner, as illustrated in Figure 4. Our task is to choose a p1 -unisolvent

set of nodes, the displacements at which uniquely determine pE. An appropriate choice is

the six nodes shown in the figure, whose node displacements are denoted by v,,j E R, for

(i,0) E {(-1, 0), (0, 0), (1, 0), (0, -1), (0, 1), (1, 1)). Expressing the six unknown parameters in terms

of the node displacements is then a simple matter of substituting the displacements into (1) and

solving the resulting nonsingular system of six equations. We obtain

1a = 22(V0 - 2v 0,0 + v-,-),
2h2

b - h(-o~" - 2vo,o + vo,....),

c = _(v1,1 - v0,i - V1,0 ± vo,0), (2)

d I (v,o - Y-1,0),

e ( v 0, ,-),
C=2h~v.

t f -- V0,0.

Of course, the six degrees of freedom of this element are insufficient to enforce C, continuity

of vh acrots inter-element boundaries. Therefore, the element is nonconforming; Sh C1(fl). It

20
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Figure 4. Unisolvent nodes for the nonconforming element.
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is a simple matter to show that the polynomials pE are in general discontinuous across element

boundaries, although continuity is maintained at the nodes themselves because each polynomial

interpolates its unisolvent set of nodal displacements. At this point, we acknowledge that our

element is somewhat unorthodox in that the definition of pE requires nodal variables associated

with two nodes which lie outside the element domain E. The justification for this transgression

is that our element, as defined, will yield a discrete system whose matrix is particularly simple

and uniform in structure. This will simplify the eventual implementation considerably. On the

other hand, alternate arrangements for the unisolvent set of nodes are clearly possible. Perhaps

a more appropriate choice from a biological standpoint would be a hexagonal .triangulation with

the unisolvent set of nodes placed at the vertices of hexagonal element domains E having sides

of common length h. Regardless of our particular choice, the quadratic elements must first be

shown to be convergent since they will invariably be nonconforming. This we will do in the next

section for the simple square element.
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4.3. The Approximate Variational Principle

Due to the nonconformity of the elements, Sh 0 )12(fl) = V, and the finite element space

is not a subspace of the admissible space V. Therefore, in lieu of the energy inner product a(., .)
of equation (3.3), we are forced to substitute the approximate energy inner product ah(., .), given

by (A.16), which can be written as

ah(uh V / A.f(1 fh h Z h h
= -- a)(u~~zv h + vh= - 2uhuv~zd dy

(is,,ii,)EC (3)
EE

+ 0 ~ U'(X 2 , Y)Vh(z V,),
-: _AhAVh + (I _ o.(h h h h h )--:rdd

(Z.,Yi)EC

where 0 < a < 1. The corresponding approximate variational principle and variational equation

are given by equations (A.17) and (A.18) respectively.

Does the approximate variational principle have a unique solution uh E Sh? To answcr this

question, we proceed in the spirit of Section A.5 by equipping Sh with a norm which we will

employ to show that ah(', -) is uniformly Sh-elliptic.

Proposition 3. The mapping Ijhj1v :$h '_. R defined by

II~hll ___ lh1,, +  V ,h(X,, y,)2)'

E E I, E (x.d,.)EC

where = (f fE(vh )2 + (Vh )2 + (vh )2 dx d y) " is the second-order Sobolev semi-norm (see

(A.3)), is a norm over Sh.

Proof. 11'l1 is a priori only a semi-norm over Sh. Consider a vh E S h such that IIl)h Ih-- 0.

Then it must be the case that (i) Ivh 2,E = 0 for a" E E Th, and that (ii) v(z,, y,) = 0 for

all (x,, v,) E C. Because of their interpolatory nature, the local polynomials p' are continuous at

all the nodes. Moreover, by condition (i), vh must be a first-degree polynomial inside every E.

With a = b = c = 0 in equation (2), it is a simple matter to show that this implies that vh is a

continuous linear function over Al. Now, by condition (ii), Vh is zero at all (X,,y,) E C. Since the

continuous problem is assumed to be well-posed, C contains at least three noncollinear points.

Consequently vh = 0, and I1"1h is therefore a norm. U

Proposition 4. The approximate energy inner product ah(., .) is uniformly Sh-elliptic.

Proof.
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n,(j'v hV h) J (Av h)2 -+ (1 - )[(Vu,.) 2 -- 2( Vh) 2 -4 (Vhy) 2 'dxdy +j 03 E th(z,, Y,)2

EE T
h 

f EXJ(,..Y,)eC

f= (1- f f(vh,)2 - (v h)21 (vhy)2 dx dy-4- + v.,,Y) 2

"EET (o,.)EC

+ / ()' d, d, + ,# o,)
E T 

'  
(x,,y)EC

I (1 -oj)vhl 2,  for 0 _ < 1, 1 1 -a.

Since I - c is positive for 0 < a < 1, ah(', -) is uniformly Sh-elliptic. I

Therefore, the approximate variational principle has a unique solution uh E Sh. Moreover,

because the ellipticity is uniform, Strang's lemma (Theorem A.5) applies, and uh will converge

to the exact solution u E V as h -- 0, if the approximation is consistent in the sense of equation

(A.21). To verify'consistency, we apply the patch test, Theorem A.6.

Proposition 5. The square, nonconfor-ntg element whose local, quadratic function is defined by

(1) and (2) passes the patch test.

Proof. Consider an arbitrary patch of four adjacent elements, all of which share a common node

v,,, internal to the patch, as shown in Figure 5. Now, suppose that we impose a constant strain

condition on the patch; that is, suppose that we constrain the displacements at all remaining

nodes around the periphery of the pr.tch by assigning to them values consistent with the function

7r 2 e 112, an arbitrary second-degree polynomial. Next, we solve the approximate variational

principle (A.17) over the patch domain. This reduces to solving for the unknown displacement

at the common unconstrained node v,,, such that it minimizes a quadratic equation. It is a

matter of routine algebraic manipulation to show that the displacement obtained will also be

consistent with 7r 2 (we omit the details). In fact, one can show that this is true for the internal,

unconstrained nodes of an arbitrary patch of any number of elements whose boundary nodes are

made consistent with 7r2. Therefore, the element passes the patch test. J

Having proved the above propositions, we can now be secure in the fact that our approximate

variational principle will provide unique discrete solutions which will converge to the exact solution

of the continuous problem as the discretization is made increasingly fine. A limit to the order of

convergence that we can expect from our approximation is given by (A.15) - since our element

is complete only through quadratics (k 2), we are limited to a convergence rate of order h 2 in

displacement (a = 0). For a more precise statement, we should take into account the consistency

error term in equation (A.20). Nevertheless, we will bypass this complicated analysis because the

consistency error is not expected to be large for smooth u which is normally the case when

approximating smooth surfaces.

4.4. The Discrete Problem

We are finally ready to derive an explicit form of the discrete problem associated with our
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Figure 5. Applying the patch test to four adjacent elements.
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approximate variational principle. There are essentially two ways of proceeding. One possibility is

to find the Ritz basis functions 4, which are associated with our finite element and which span

the space Sh. The basis functions are nonconforming piecewise quadratics with local support, and

a basis function associated with each node of the triangulation. We can then use the variational

equation (A.18) directly, and write the discrete problem as the linear system of equations analogous

to equation (A.13) by computing the matrix coefficients a,( ,, Oj). Unfortunately, the piecewi-

continuous 'nature of the basis functions makes them tedious to manipulate, especially near

the boundary. We will adopt an alternate approach which altogether avoids the derivation and

manipulation of the basis functions. The approach is to solve the approximate variational principle

by minimizing the functional rh(-) of equation (A.l7). Before doing so, however, we make two

additionlal simplifications.

The first simplification involves taking a conservative stance once more. There is no reason

to believe that the human visual system is biased in the depth values it assigns such as, for

example, making all of them too small or too large. That is to say, we have no reason to assume

that there is an external influence on the surface other than that provided by the constraints C,

and we should therefore nullify the externally-applied surface force: g(z, y) 0. The linear form

(3.4) for the free plate then reduces to

i3Wh Fj ( 1 .. h(X 1 Y') -C.,Y) (4)
(z ,, )EC
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The second simplification involves the choice of a numerical value for the constant a in our

approximate energy inner product a,(., .) given by (3). According to the proof of Proposition 4,

we are at liberty to choose any value in the range 0 < a < 1, therefore, the simplifying choice

ao = 0 will be made.4 Setting a = 0 in (3), the energy inner product becomes

ah(Uh, V h) u fJ uVh + 2u4v ±h + hV dx dy + 93 U u"(Xt) Yj)VuI(Zg,:). 5
EET h (i,,)E C

Thus, according to equation (A.17), we obtain the simplified energy functional

h(V h) ah (vh, vh) _ f(Vh)
2(G

-( hj) + 2( VY) + (Vh)2 dxdy + [V (,, ,) -) C, . ,V.,) . (
2ET"fL2(xi,yi)EC

The expression inside the integral will be recognized as the "quadratic variation" expression used

by Grimson [1981a].

Since the triangulation over the rectangular region 0l is that of a uniform square grid, it is

convenient to impose on the nodes the natural lexicographic indexing scheme implied by Figure

4. We index the nodes by (i,j) for i = 1,... ,N. andj = 1,..., Ny where N. and N , are the

number of nodes along the z and y axis respectively. The total number of nodes is N - N X N.

The displacement at node (i,j) is denoted by the variable vsp and all the displacements together

are denoted by the vector vh E RN

The next step is to express the functional in terms of the node displacements with the help

of our element. Inside each element domain E, v h is a quadratic polynomial given by (1) and (2).

Therefore, the second partial derivatives of pE are con:" w.t within E, and are given by

VI , = 2a = j2 (V ,., - 2v,, + vT._.,);

) h 1E = PE = 2b = (V - v , + v,,,_h

1 h , = c= I , h, v h- ,,,+ + v h,)

where it is assumed that ij is the index of the lower left hand node of E. The form of these

second derivatives will be recognized as being simply the finite difference approximations of order

h 2 for the respective derivatives on a uniform, square mesh (see, e.g., [Abramowits and Stegun,

1965, pg. 884)). Of course, this result is a consequence of our particular choice of finite element,

and it will lead to a particularly simple discrete problem. With other elements one cannot expect

to obtain finite difference expressions, even for uniform triangulations. Substituting the expressions

4Recall that a is the Poisson constant of the elastic material, so our choice implies that the material
does not change in width as it stretches lengthwise. Although this value is not meaningful physically, it
is perfectly acceptable mathematically. Aside from a question of convenience, there is further evidence
that supports this choice in terms of the optical laws of image formation (see [Grimson, 1982b]).
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for the derivatives into ah(Vh, Vh) in (6) and noting that the area of each element is h2 , we

obtain s

h(VL) . J (PO ) + 2(p-) 2 + (p)2 dzdy + (v,. - c,,,)2

2EET& Z b (1,j )EC

= 2  3 [(2a) + 2c2 + (2b)2 ] -  j (v+ 2

EE T (" I

-2 2v, + , i+ t %+ 

(,,j )EC

We can write the above expression for the functional (aside from the additive constant term)

in matrix form as

4(v h) = V(, AhVh) - (rh, Vh (7)

where (., .)R RN X R" -- R denotes the familiar Euclidean inner product, and Ah C 1jNN is a

matrix of coefficients. Clearly, equation (7) is the discrete equivalent of the functional (6). For

the line.ar term, we have fh = pch where Ch E R!N is a vector whose entries associaited with

constraincd displacements are the constraint values ch, and the rest are sero. On the other hand,

the matrix Ah E RNN which forms the quadratic term, is a matrix of coefficients which can

be brokmn down as the sum of two matrices: A h = Ah + Bh. The matrix Bh is a diagonal

matrix whose diagonal entries associated with constrained displacements are equal to 6 , and the

remainder are sero. As is clear from equation (A.13), the entries of the other component Ah can

be interpreted as inner products between pairs of basis functions of the finite element space Sh.

Since the basis functions have local support, most of these inner products will be zero thereby

making Ah sparse and banded. Moreover, since by Propositions I and 4, the energy inner product

is symmetric and Sh-elliptic, Ah is a positive definite, symmetric matrix. These are important

properties from a computational point of view.

To obtain the minimum of Ch(Vh) we set to zfro its partial derivatives with respect to each

of the displacements vh,. The minimizing vector of displacements uh satisfies the condition

V4(u) = Ahuh - h = 0,

(where 7 is the gradient operator) which yields a discrete problem in the form of a system of

linear equations:

Auh = ru ,  (8)

where tle entries of Ah are given by

'We ale,) assume for simplicity that all constraints c(,.,) coincide with nodes (i,j) in Th. Hence, we
will denote the constraints by ca',.
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Figure 6. Computational molecules associated with the discrete problem.
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From this expression, Ah will be recognized as the Hessian matrsz of the function&! th (Fea~, e.g.,

[Luenberger, 1973]).

Although the evaluation of the Hessian matrix entries is routine iar interior 'n ies, it is

tedious due to the special cases for the elements around the boundaries of the region fl. We
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omit the details and give the final result in terms of a set of computational molecules which are

illustrated in Figure 6 in relation to the lower left hand edge of f) whose boundary is indicated by

bold links. Obviously, computational molecules for the remaining edges are appropriate rotations

of those shown. The particular computational molecule associated with a node specifies the

(nonzero) coefficients of the equation for that node. For example, the equation for the displacement

at a node (i,j) in the interior of the region (indicated by the double circle in the topmost

computational molecule in Figure 6) is

8 +vh " + Vh + Vh_, + Vh

+ I (V .. , 1  + h : 1,- h V 1 , l ± ~ 1 , (9)

W + vi+2 ,, , ,-2 + V1 ,3 .2)

20 h +ch2 10, + #v,, = c,

The terms involving # are present only if there is a constraint c,,, at that node.

The sparseness of Ah is evident from the above equation - matrix rows associated with

interior nodes have only 13 nonzero entries, while rows associated with nodes near the boundaries

have even fewer. Also, note that the computational molecule for the center of the region is a

factor cf h2 (due to the elemental area) tines the finite difference approximation of order h2

for the biharmonic operator [Abramowitz and Stegun, 1965, pg. 885] that is associated with the

Euler-Lagrange equation for our variational principle This is an expected consequence of our

particulir choice of element which yielded finite difference app-oximations for the second partial

derivati-res of vh.Moreover, aside from multiplicative constants, the same molecules were obtained

by Grimson f1981al in the specification of a (conjugate gradient) mathematical programming

algorithm. As was previously argued however, the finite 214inent method is richer in that it

systematically suggests many alternative, less-restructive triangulations, as well as more general

local representations for surfaces.

5. MULTI-LEVEL SURFACE RECONSTRUCTION

As we have seen, the application of the finite element method to a well-posed quadratic

variational principle, such as the one on which our surface approximation problem is based,

inevitably leads to an equivalent discrete problem which takes the form of a linear system of

algebraic equations. The matrix of coefficients of this nonsingular system is symmetric, positive

definite, sparse, and banded. Computing the most consistent approximating surface now amounts

to solving this system and, in this chapter, we adopt an efficient hierarchical algorithm to perform

this task. We will proceed to develop the algorithm and to demonstrate its performance it on

constraints from stereopsis.
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5.1. Possible Methodologies for Solving the Discrete Problem

The solution of linear systems is a very important problem in numerical analysis aLnd the

many techniques which have been developed fall into essentially two broad classes - direct

methods which yield the solution in a finite number of steps, and iterative methods which typically

converge asymptotically to the solution (see, e.g. [Dahiquist and Bjorck, 1974lj or [Gladwell and

Wait, 1979]).

Direct methods include matrix inversion methods such as Gaussian elimination a-nd LU

decomposition. Although widely used for solving finite element equations, they usually do rot

exploit the sparseness and bandedness of the system matrix because, during the inversion process,

the sparse matrix is transformed into a full one.' Consequently, all the elements of the matrix

must be stored. Moreover, direct methods are typically global and sequential algorithms, which

makes them unsuitable models for neurally-based visual processes.

On the other hand, the class of iterative methods readily gives rise to biologically -feasible

algorithms. Examples in this class are relaxation methods such as Jacobi relaxation, Gauss-Seidel

relaxation and successive overrelazation, as well as gradient methods such as gradient descent and

the conjugate gradient method. Iterative methods exploit the sparseness of the matrix inasmuch

as they do not modify its elements from one iteration to the next. Therefore, only the relatively

few nonzero matrix elements need be stored. Owing to the sparseness and banded structure

of the matrix, iterative methods require Jocal-support computations only, and in certain forms

such as Jacobi relaxation and gradient methods the computations can be performed in parallel.

Because iterative methods in general and relaxation in particular are fundamental to the ensuing

discussion, an introduction to some of the relevant mathematics of this class of techniques is

included in Appendix B for convenience.

The algorithms we are contemplating are to be executed by computational mechanisms in

the form of networks of many simple processors, such as neurons, which are directly connected

* only to near neighbors. Due to the myopic nature of the processors, global interactions can take

place only indirectly, through the iterative process, by an incremental propagation of information.

Normally, the network is large and since this is reflected in the size of the linear system, we

anticipate that a vast number of iterations will be required for any relaxation or gradient method

* to converge. Typically, the number of iterations will be on the order of N'm , where N is the

dimension of the matrix, and m is the highest order of partial derivatives present in the energy

Finner product, which in our case is two. Grimson's [1981a) formulation of surface interpolation as

a problem in mathematical programming naturally led him to the choice of a gradient method

for its solution and, not unexpectedly, disappointingly slow convergence rates were observed due

to the large size of the images typically encountered.

'For a positive definmite symmetric matrix, the inverse matrix remains banded, but is no longer sparse
within the band. The inverse matrix is the discrete Green's function for our problem, which in general
bas global support over .
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Recently, a class of iterative techniques called multi-grid methods have seen increased

application to the numerical solution of boundary value problems for which they achieve

convergence in essentially order N number of operations fBrandt, 1977a, 1977b; Brandt and Dinar,

1979]. This spectacular improvement results from the use of a hierarchy of grids to increase the

efficiency of the global propagation of information. Multi-grid algorithms feature both intra-grid

and inter-grid processes. Typically, the intra-grid processes are relaxation iterations, while the

inter-grid processes are local polynomial interpolations. Therefore the multi-grid algorithms are,

in principle, biologically feasible. A final issue which speaks in favor of adopting them to vision

is the intrinsic multi-level structure of the earliest stages of the visual system itself and, as we

argued in the introduction, the apparent need t- maintain this structure at least to the level of

the 2J-D sketch.

We therefore advocate a hierarchical approach to surface reconstruction, which we will

develop initially in the context of the Marr-Poggio stereo theory whose clear multi-level structure

provides ample motivation. At the heart of the proposed scheme lies a multi-grid algorithm

adapted to the fast solution of a hierarchy of discrete thin plate surface approximation problems.

In the following sections, we present the underlying theory and build up a detailed description of

the multi-level algorithm.

5.2. The Multi-Level Equations

A. we have stated, the stereo module generates sparse depth information over a range of

resolutions. The information at any particular scale can be thought of as a set of constraints

which, at that level, define a well-posed, discrete surface approximation problem. It is natural

then to view our surface reconstruction problem as the solution of a hierarchy of such discrete

problems. The discretizations are performed in the usual way by introducing a sequence of finite

element spaces Sh,...' ShL over the rectangular domain fl, where L is the number of levels

and h, > ... > hL are the fundamental lengths of the elements at each level. In the familiar

notation, we will denote the functions which are members of the finite element spaces by (italic

face) v"1 E S h', and the parameters (i.e., the nodal displacements) which define these functions

according to (A.1l) by (bold face) vectors vhk E "N , where Nh is the dimension of Sh;. The

'II hierarchy of problems is then given by the sequence of L linear systems (see equation (4.8)) of

the form

A huh. = fh, I < k < L, (1)

whose discrete solutions uh  E NNh& for 1 < k < L define a sequence of functions Uh
k E Sk which

constitute the hierarchy of full surface representations.

Aithough, in theory, there need be no restriction in the relationship of element sizes from

one level to the next, a number of practical implementation-related issues point towards the

subdivision of each square element domain on a given level S'1 into four identical element domains
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on the next finer level Sh,+i; that is, we choose hk 2hk+l. Consequently, S41, wi!l be a

subspace of Sl"+', and the implementation of the inter-level processes is simplified substantially.

Moreover, the 2:1 ratio is a natural one in view of the spatial-frequency bandpass channels in early

vision whose center frequencies are spaced approximately on. octave apart, the spatial res:htion

of a channel being about twice that of the immediately coarser one [Wilson and Giese, 1979].

Finally, the choice can be shown to be near optimal in terms of the multi-grid convergence rate

[Brandt, 1977a, pg. 353]. Since the triangulation of 0 associated with our simple elements is a

uniform grid of square element domains, the 2:1 ratio implies that in scanning along te z or

y directions, every second node of a grid coincides with a node of the next coarser grid and,

furthermore, that the number of nodes is related from one level to the next by Nhh,- ' =- IN h .
.

Therefore, the total amount of space required to maintain all of the representations is bounded

by NhL(I + - ) NhL; i.e., it is only a small fraction more than that required for

the finest grid.

One can think of several possibilities for exploiting the hierarchy of discrete problems to

increase the convergence rate of the iterative process. Perhaps the first idea that comes to mind

is to solve the system at the coarsest level, which can be done very quickly, and use the solution

as an initial approximation in the iterative solution of the next finer level, proceeding in this

manner to the finest level. This is an effective acceleration strategy which is almost as old as the

idea of relaxation itself [Southwell, 1946]. Although it is suitable for obtaining a single accurate

solution at the finest level, it cannot generate solutions having the finest-level accuracy over the

hierarchy of coarser levels, since the approximation error increases as the elements become larger.

This is undesirable from the point of view of our surface reconstruction problem. Here we require

that the accuracy of the finest-resolution surface be maintained throughout the coarser surface

descriptions. This will guarantee that the shape of the surface will be consistent over the hierarchy

of representations.

The stipulation that accuracy be maintained is further motivated by psychophysical studies

into the phenomenon of visual hyperacuity (see, e.g., [Westheimer, 1977; Westheimer and McKee,

1975, 1977]). Related computational studies indicate that, in principle, sharp, well-defined intensity

edges can be localized to high (sub-receptor separation) accuracies from the V2 G convolution

r values through a process of spatiotemporal interpolation [Barlow, 1979; Marr et al., 1980; Hildreth,

1980; Crick et al., 1981; Fahle and Poggio, 1981]. Consequently, it seems that although the depth

constraints arising from the larger channels in stereopsis represent coarser spatial samplings of the

scene, excluding erroneous matches, the samples may provide highly accurate range information.

The only way that consistent accuracy can be maintained throughout the hierarchy of full

surface representations is to allow the coarser levels access to the high-resolution information in

the finer levels. The multi-grid algorithm provides such a flow. The hierarcny of levels cooperate,

through a bi-directional flow of information, to simultaneously generate multiple, equally-accurate
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surface representations, and do so with much less computational effort than would be expended

in solving the finest-level system in isolation. To see how this is accomplished, we wi!l initially

consider only two levels, a fine one and a coarse one, associated with the finite element spaces Sh

and S2h respectively. Suppose that by some iterative process we obtain an approximate solution

v2h to the coarse level system A2hu2h = f2h, which is then interpolated7 to the fine level where

it becomes the initial approximation vh

h --  I v2h .  (2)

The mapping 12h=,h: S2h S S h denotes interpolation from the coarse space to the fine space.

Normally, vh will require substantial improvement.

Let uh be the solution to the fine level system Ahul = fh. Then we can define the error

vector in a given approximation vh by eh = U- h
. Clearly, if e4 could be computed, it could be

added as a correction to vh, thereby giving us the desired solution. But because the computation

of eh would take about as much effort as computing uh itself, doing so would not be helpful.

On the other hand, if we could somehow approximate the error function e h by a function e2h in

the coaise space S24, such an approximation can be obtained quickly due to the fact, that the

coarse space has only one quarter the dimensionality of the fine space. Such an approximation is

general]; not possible, however, because e", having been generated by an interpolation from the

coarse grid solution, is certain to have large fluctuations with wavelengths less than 4h. These

high-frequency Fourier components could not be approximated on the coarse grid because there

they would alias as lower-frequency components. Before a meaningful approximation to the error

can be obtained on the coarse grid, the high-frequency components must be eliminated; that is

to say, the error function ch must be smoothed.

Since smoothing is inherently a local operation, it should not be surprising that local iterative

methodn, inefficient as they are in obtaining solutions, are very efficient at smoothing the error

functior. In particular, although relaxation generally requires very many iterations to eliminate

the global, low-frequency components of the error, it only takes a few iterations to eliminate

the local, high-frequency components. This behavior can be predicted mathematically by a Local

- 1 Fourier analysis of the given iterative method [Brandt, 1977a]. The analysis involves a local Fourier

expansion of the error function followed by an examination of the effect that a single iteration

has on i.he amplitudes of each component. An important quantity which is obtained through this

analysis is the smoothing factor j of the iterative scheme, which is defined as the worst (i.e.,

the largest) amplification of a high-frequency component of the error from one iteration to the

next. As an example, in Appendix C we carry out a local Fourier analysis of the appropriate

Gauss-Seidel scheme for our discrete problem, and show that 4 = 0.8. This implies that, for our

problem, ten Gau -Seidel iterations on the fine grid are sufficient to reduce the high-frequency

7Logranle interpolahon of a suitable order may be used.
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components of eh by approximately an order of magnitude. A more effective weighted Jacobi

relaxation scheme, which is also suitable for our problem and gives a 4 r- 0.549, is described in

[Brandt, 1977a, pg. 342].8

Once the error has becn smoothed, it may be inexpensively approximated on the coarse

grid. The equation for eh on the fine grid is the residual equation

Aheh = rh, where rh = fh -Ahvh (3)

is called the residual of the approximation vh. The approximation to this equation on the coarser

grid is

A 2 he 2 h -
h ,

h=*2h

where the mapping 'h=.i2h:8 h 
"- S 2 h is an "interpolation" from the fine space to the coarse

space. Because S2h C Sh, the mapping can be a simple injection or some local averaging of node

displacements from the fine grid to the coarse. After e 21 is computed, a better approximation to

vh may be obtained by interpolating the coarse grid correction back to the fine grid; that is, by

making the replacement:

v 'h -± I e~u

2hf*h

This correction practically annihilates the smooth part of the error eh.

Brandt [1977a, 1977b] calls the foregoing scheme a correction scheme in view of the fact

that the function computed on the coarse grid is the error function; that is, the correction to

the fine grid approximation. The correction scheme is easy to implement, but it is unsuitable for

our surface reconstruction problem because instead of an error function e2h, we require that the

function computed in the coarse space be a function u2h which represents explicitly the distances

to surfaces in the scene. This may be accomplished by a reformulation of the correction scheme

equations which converts them into those of the related full approximation scheme.

First, we rewrite (3) in the equivalent form

A h(vh + eh) - Av h = r ,

which may be approximated by the corresponding coarse-grid equation

A 2
h( I Vh +e

2
h) -A 2

h(i Vh) h L
h*2h h 2h h-2h

Defining a new function u2h in S2h by the nodal displacement vector u2h - Ih..2hV h + e 2h, we

obtain the coarse level system

'Brandt proposes this scheme for ;olving biharmonic boundary value problems. The scheme is also
W[ appropriate for our surface approximation problem which is in essence a biharmonic problem in view of

the associated Euler-Lagrange equation.
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AhU2 h = 32h Awhere g2h = Ai2( I vh)-+ I rh .  (4)
h-*2h h*2h

It is natural to interpret (4) as the original coarse-level system A2hu 2h = f2h but with a right-hand

side which has been modified using information from the fine grid so as to maintain the fine-grid

accuracy in the coarse-grid function u2h. Thus, g~h is an estimate of the local truncation error on

the coarse level relative to the fine level (see [Brandt, 1977b, pg. 284]).

Once the solution u2h of equation (4) is available, we can write e 2h - U21, - lh,21, Vh as the

desired coarse-grid approximation to the fine-grid error, and the approximation on the fine level

can be corrected by the replacement

v h 4-v h + I (u 2h - I vih). (5)
2k=*h h=2h

Note that since 12h=,h Ih=42hv h # v h the replacements given by (2) and (5) are not equivalent.

Since u 2h is a low-freqiency correction, the replacement indicated by (2) would destroy the

high-frequency components of vh whereas the replacement indicated by (5) preserves them.

How do we solve the coarse-grid equation (4)? The obvious answer is: by relaxation iterations

on the coarse grid, and with the help of corrections obtained from still coarser grids. Thus, in a

straightforward recursive fashion, we can extend the above two-level equations to any number of
levels. In view of (4) and the fact that the residual for the level k equations is given by

rhk =ghk - Ahku h h, (6)
the multi-level equations for L levels are given by

Ahruh4 = 9)hk for I < k < L, (7)

where

9 h ' ; and

Shh Ahk( U Uhk+,) + -  I (gh,+, - Ahj ,uhi, ,), for 0< k<L-I. (8)
hk h, t hk + l- *hh

Note that the original, right-hand side fah of the kth level problem occurs only on the finest

level L. The right-hand sides of the coarser levels have been modified in order that the finest

level accuracy be properly maintained throughout; that is to say, in order for the solutions U hk

to coincide: uh - Ih,.h, Uk . Ih 2 .hi "" "hL-hL,- Uh_. Analogously to the two-grid case,

we can interpret the difference of the original and the corrected right-hand sides, f" gh,, as

an estiaate of the local truncation error of level k relative to the finest level.

5.3. Multi-Level Surface Reconstruction Algorithms

We have motivated the multi-level approach to surface reconstruction and described in a

quantitative manner its basic components - the intra-level relaxation processes, and the inter-level

interpolation processes. It now remains to show how to bring the components together into an
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algorithm for solving the multi-level equations (7) and (8). Several schemes have been proposed

[Brandt, 1977a, 1977b; Brandt and Dinar, 1979]. We will describe one which is appropriate in terms

of our surface approximation problem. 9 Before defining the full multi-level surface reconstruction

algorithm, we will define its main procedure, the multi-level surface reconstruction cycle.

The multi-level surface reconstruction cycle starts at the (currently) finest level 1, making

several cycles to the coarser levels k I 1- 1,1 - 2,. .. , 1, until a hierarchy of surface representations

which are as accurate as is possible in the Sh" space is obtained. Let ck denote a tolerance for

solving the equations on level k. e and q7 are switching parameters which are given appropriate

values below.

Algorithm I - Multi-Level Surface Reconstruction Cycle

Step I - initialize the finest level 1.

Set the right hand side of the level I problem Ahuh, gh, to the original right hand

side: g +- f". Introduce the initial approximation vh +_ v0h'. Set ej i- 0,10 and k +- I.

Step 2 - start a new operation level k.
Set el d -

Step 3 - perform a relaxation iteration.

Perform a relaxation iteration for the equation A uh - gh and concurrently compute

some norm of the residual given by (6), ek 4-1Irh .I.

Step 4 - test the convergence and its rate.

If eC ! Ek, then convergence has been obtained at the current operation level; go

to Step 6. If k = 1, go to Step 3. If ek tle' Id then the convergence rate is still

satisfactory, set cold C- e, and go to Step 3; otherwise the convergence rate is slow so

go to Step 5.

Step 5 - transfer to coarser level.

Introduce as the first coarse-level approximation the function uh. - , defined by the

nodal displacements

V h h14- = h j

Set the right-hand side of the coarser level problem Ahk-.uhj - - g=So-, to

9h-, , A''V"hk- + 1 (g'h -A hh vh)

'Brandt refers to it as the accommodstive, fid multi-grid, Mil approximation scheme algorithm IBrandt and
Dinar, 1979.

"0 This value for et is temporary. A realistic value is introduced In Step 5.
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(in view of equation (8)). Set the tolerance k-1 -- Ce. Concurrently with the

computation of ghl.-I, compute the norm of the local truncation error -' -

using the same norm as in Step 3. If k = I set e -- - gh, ,J6.1 Finally, set

k *- k - 1 and go to Step 2.

Step 6 - use converged solution uhh to correct finer level.

If k < , make the correction (in view of equation (5))

v
h
&+2 .- v

h
k+1+ I (u h'- I vhA+i);

set k *-- k + 1 and go to Step 2. Otherwise, if k i end.

The relaxation operation in Step 3 can, in principle, be based on any one of the iterative

methods described in Appendix B, but is usually a simple Jacobi or Gauss-Seidel iteration. For

our surface reconstruction problem, in view of equation (4.9) and the discussion in Appendix B,

the Jacobi relaxation iteration in the interior of rl is given by

(, I I v i ().
_€_) - h _ . + +, ,. _ t v,..,+
2 h2(,) + V! +(, V.(, (

h2 l -- v-, f-1 + 3(9)
I_ ( ,( ) 2 (' , .? v(,) + , V

h , v,+.., ' v,,._)2 + v,+2) + 13g,, ,

while the Gauss-Seidel relaxation iteration is given by

v:+l)= [ v(,+ ) + ,,) , ._,_i +._(,)
h4 (,>i (+ ) v ( ' ) + ( ' 

- (10)
2 1_,:_ + _,l I + ,- ,, j'l+ 1 + v! , ,+ I)W2(-')+ ) +(,

h2 
1  (!)-+21, + V,(') 2 + v,_ +v 1 .,+ 2 ) + og,,]

where we have suppressed the superscripts hk indicating the level, and have instead introduced the

bracketed superscripts which indicate the iteration number. Analogous formulas for the boundary

points can be derived from the computational molecules associated with the boundary. The norm

computed in Steps 3 and 5 can be the discrete L 2 or L.. norm. In the case of Gauss-Seidel

relaxation, it is quicker to compute the dynamic norm, as the iteration progresses, rather than

the static norm (see, e.g. [Brandt, 1977b, pg. 2861).

Ar important feature of the multi-level algorithm is that the local Fourier analysis, in

addition to providing a prediction of the convergence rate, enables one to predict near-optimal

values for the switching parameters. It turns out that the actual values assigned to the switching

parameters are not critical, and that good values are = 0.2 and r = T, where A is the smoothing

''The constant I is the value of 2 -P (see [Brandt, 1979, pg. 651), where p 2 is the approximation
order of the secoud partial derivatives of the energy inner product that is achieved by our quadratic
element.
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factor of the relaxation method used in Step 3 of the algorithm (see Jllrandt, 1977b, pg. 290]).

The order of the interpolation operators is determined by the problem itielf; i.e. the order of

derivatives in the energy inner product. For the coarse-to-fine interpolation , in Step

6, the natural second-degree interpolation of the element polynomial pE may be used. On the

other hand, simple injections perform well for the fine-to-coarse transfers , in Step 5 and

Ih,+,h, in Step 6.

Having defined the multi-level cycle which starts at the finest level I and cycles through the

coarser levels, we will employ it as a procedure within a more general, full multi-level surface

reconstruction algorithm. We now think of the level I of the cycling algorithm as the currently

finest level; i.e., the finest level for which an approximate solution has already been computed by

the multi-level cycle. The full algorithm works in the opposite direction, the currently finest level

progressing from' the coarsest level 17= 1, to the finest level I L.

Algorithm 2 - Full, Multi-Level Surface Reconstruction Algorithm

Step I - solve the coarsest-grid equation.

Compute by relaxation an approximate solution u h 
, to the coarsest-grid equation

AhIuh , fh. Set I -- 1.

Step 2 - set a new finest level I.

If I = L stop. Otherwise increrrent the currently finest level 1 4- 1 + 1, and set the first

approximation on the new level to be the function v h ' defined by nodal displacements
h,i Uhi-i

V 0 = Ih,_,=*hu

Step 3 - perform a multi-level cycle.

Invoke Algorithm I and when it ends, go to Step 2.

Note that the solution in Step 1 will be performed quickly because Sh, has relatively few

dimensions. In Step 3, each time Algorithm 1 terminates at level 1, we have obtained a hierarchy of

I representations whose accuracy is the best possible on level 1. The currently finest approximation

is then interpolated to the next finer level until the finest level L is reached. Brandt recommends

a somewhat higher-order interpolation for the initial interpolation Ih,_,.Ia in Step 2. Third order

Lagrangian interpolation seems adequate for our surface interpolation problem, as we will see

from the demonstrations in the next section.

Algorithm 1 is accommodative in that it makes internal checks, based on the computation

of norms, to determine when to switch levels. For many types of problems, accommodative

algorithms behave in a fairly fixed manner, performing a similar number of iterations on each

level before switching. It is then possible to avoid computing the dynamic-residual norm in Step

3 of Algorithm 1, and to preassign a fixed flow. A switch to the coarser level Shh-I is made after

n, iterations have been performed at level Sh,. Analogously, a switch to toe finer level S+1 is

made after nf iterations have been performed on level S since the last return from the finer
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level. n, depends or the smoothing factor, a good choice being n, = log.I / log /T. Sometimes nf

varies from level to level. For a more extensive discussion see [Brandt, 1979, pg. 68 39]. Fired

algorithms are to be preferred for parallel implementations in general, and from a biological point

of view in particular.

In order to evaluate the performance of the multi-level surface reconstruction algorithm, we

define a unit of computation called a work unit which is the amount of computation required to

perform one relaxation iteration on the finest level L. It is roughly equal to wNl-, where w is

the number of operations required to compute the residual at each node' 2 and W l-is the number

of nodes at the finest level. Since there are one quarter as many nodes on level k - 1 as there

are on level k, only 1/4' work unit ib required to perform a relaxation iteration on leveL L- i.

The proportionate amount of computation done on coarser grids thus diminishes very rapidly.

Although, for accommodative algorithms, it is difficult to predict the total number of operations

consumed by the inter-level processes, it normally turns out to be considerably less than the total

inter-level process computation, and is therefore usually ignored (see [Brandt, 1977a, section 6.2]).

A final issue that we have not yet considered in quantitative terms is the choice of appropriate

values fr the (spring) constant )3. In the mathematical and, in particular, in the finite element

literatuie, the constraint term '5(v) of equation (2.2) is known as a penalty function (see, e.g.,

[Courant, 1943], (Babuska, 1973], [Strang and Fix, 1973], [Zienkiewicz, 19741). The incorporation

of penalty functions into variational principles is a standard way of approximately satisfying

essentia' boundary conditions by converting them into appropriate natural boundary -onditions

which rzay be handled straightforwardly by the finite element method. Penalty functions are

particulirly useful when the essential boundary conditions in question are complicated, or when

only their approximate satisfaction is desired, as in the case of visual surface approximation. An

optimal value for 3 can be derived through the following considerations. Let w be the solution

to our surface approximation problem, which interpolates the known depth points. As usual,

u E )/2(!I) denotes the exact solution to the variational principle (2.2), including the penalty term

er,, and u h E Sh denotes the finite element approximation to u. Then, there will be a balance

between the error w - u which measures how closely the surface fits the constraints and the error

-s- u h, due to minimizing over a finite element subspace [Strang and Fix, 1973, pp. 132-133].

Analyzing this balance, Babuska 119731 determined that the optimal value for / is dependent on h

and is given by Oh -= yh- k, where , is a constant and k is the degree of the complete polynomial

contain(d in Sh. Therefoie, for our quadratic Enite elements, k = 2, and the best value- for / at

level j of the multi-level algorithm is Oh, -= "y/h .

5.4. Examples of Multi-Level Surface Reconstruction

Fig:ure 7, is a schematic diagram of the structure of the multi-level surface reconstruction

t2w is determined by the specific relaxation scheme used, but due to the size of the support of the
central computational molecule, it is approximately equal to 13.
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Figure 7. The structure of the multi-level surface reconstnictiom algorithm.
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algorithm, showing three levels of resolution. The diagram depicts the relaxation processes operating

at each level, as well as the fine-to-coarse and coarse-to-fine processes which transfer information

between levels. The algorithm transforms a hierarchy of sparse surface depth representations, such

as might be provided through the independent stereo bandpass channels, into a hierarchy of full

surface representations which constitute the full 2J-D sketch. The constraints for the surfaces

shown in the figure are random samples from a surface which varies sinusoidally in depth. It is

evident that the multiple full representations output by the algorithm, describe the sinusoidal

surface over a range of scales and that the accuracy of the finest representation is maintained in

the coarser ones.

In this section, a number of examples of multi-level surface reconstruction are presented.

We will consider the reconstruction of surfaces from artificially-generated constraints, as well

as constraints generated from natural images by an implementation of the Marr-Poggio stereo

theory. The performance of the multi-level algorithm is compared to that of single-level iterative

algorithms. In the examples presented, the algorithm was started from identically zero initial

approximations on all the levels.

In the first sequence of figures, we present synthetic examples of surface reconstructions with

the purpose of illustrating the performance of the algorithm in reconstructing quadric surfaces

having :,ero, positive, and negative Gaussian curvatures. Constraints on each level were synthesized

by sampling depth along arcs on the surface. The examples, involved four levels whose grids had

dimensins N - - 17, N = N = 33, N - -- 65, and N= N h- = 129,

with corresponding grid spacings hl = 0.8, h2 = 0.4, h3 = 0.2, and h4 = 0.1. The relaxation

method employed was the Gauss-Seidel method of equation (5.10), and a value of 2.0 vas chosen

for -y, giving Ph, = 2.0/h2.

Figure 8 shows depth constraints whose values are consistent with a cylindrical surface viewed

at four resolutions. The constraints lie along arcs of greatest curvature. Figure 9 illustrates the

hierarchy of full surface descriptions reconstructed by the four-level algorithm. Since the constraints

on all the levels sample the same ideal cylindrical surface, the full surface representations coincide

to a high degree of accuracy. Convergence was obtained after 12.0 work units. For comparison

purposes, the finest level problem was isolated from the coarser levels and the same Gauss-Seidel

relaxation algorithm was applied to it. Figure 10 shows the (single-level) approximation obtained

after 800 work units (i.e., iterations). It is clear that we are still very far from convergence.

Although the approximation is generally smooth, it has large low-frequency error compc.nents and

the approximate surface lies far below its final value between constraints which are separated by

fairly large distances. As predicted by the local Fourier analysis, it is precisely such low-frequency

error ccmponents that local iterative algorithms have difficulty liquidating. In fact, the following

characte-ristic phenomenon was observed. During the initial iterations, the correctionsi made to

the approximation decreased rapidly, so that by the 8 0 0 th iteration they are minute, even though
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Figure 8. Constraints at four scales consistent with a cyliodrical surface.
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Figure 9. Hierarchy of full surface descriptions generated by the multi-level algorithm.
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Figure 10. Single level approximation after 800 work units.

i: INN

the error norm is still very large. Since there are 17,361 nodes in the grid, it may take on the

order of (17,361)2 work units to obtain the solution without the help of the coarser levels. Thus,

the multi-level algorithm is vastly superior when the constraints are far apart.

Figures 11 and 12 show a synthetic example of the reconstruction of a hemispherical surface

from constraints which form latitudinal circles. The hierarchy of full surface representations was

obtained after 4.25 work units. Figures 13 and 14 illustrate an analogous example involving

a hyperbolic paraboloid (saddle surface), where the constraints form parallel parabolic arcs.

Convergence was achieved after only 2.5 work units (only a single iteration was performed on

the finest level). Single levcl algorithms applied to the above surfaces exhibited poor convergence

properties similar to the case of the cylinder.

The above examples simulate a visual situation where the surface in the scene has reflectance

changes in the form of widely-spaced rulings but is otherwise free of intensity changes. This is an

unlikely situation in view of the fact that the visual world is full of textures, which often arise from
surface material and pigment changes. Such textures generally result in relatively densely-spaced

zero-crossings forming, to a certain extent, random patterns. In turn, these zero-crossings give rise

to constraints having similar properties. Figure 15 illustrates a simulation of this situation using

a varying sinusoidally in depth. A three-level surface reconstruction algorithm was used.

The constraints input on each level were 30%-density randomly-located samples of the surface

depth. In addition, to simulate the effects of possible inaccuracies in the constraint values, each
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Figure 11. Constraints at tour scales consistent with a hemispherical surface.
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Figure 12. Hierarchy of full surface descriptions generated by the mnulti-level algorithm.
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Figure 13. Constraints at four scales consistent with a hyperbolic paraboloid.
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Figure 14. Hierarchy of full durface descriptions generated by the inulti-iev'cl iilguidmai.
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Figure 15. Surl'ace reconstruction from~ randoiiuly-placcd tlepth ronstraiiits.
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Figure 16. Single level approximation after 19 work units.
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sample was corrupted by zero-mean, uniformly-distributed, additive noise whose magnitude was

one tenth the sample value. The algorithm generated full surface representation hierarchy in 18.75

work units. Evidently. our spring model for the influence of the constraints, with 6,,, - 2/h',

is adequate for this case in that the additive noise has not adversely affected the quality of the

reconstructed surfaces. The results after 19 work units (iterations) with single-level Gauss-Seidel

relaxation on the isolated finest grid are shown in Figure 16 for comparison. It is evident that the

approximation is still far from the true solution. In fact, a total of 71 work units was required

to reduce the error norm to the magnitude obtained after 18.75 work units by the three-level

algorithm. The saving in computation is less in this example than in the ones above because,

first, only three levels were used and, second, the density of the constraints is greater. In general,

the greater the density of the known depth values, the tighter the surface is constrained, and

the convergence is expected to be faster. Another way to think of this is that as the average

distance between constraints decreases, the efficiency of relaxation in liquidating the low-frequency

Fourier components in the error increases and, therefore, the relative advantage of the multi-level

algorithm is correspondingly diminished.

The next examples illustrate the performance of the multi-level algorithm using disparity

constraints generated by Crimson's implementation of the Marr-Poggio stereo algorithm [Crimson,

1981a, 1981b], which includes some of the modifications suggested by Mayhew and Frisby

[1980, 19811 for exploiting disparity gradient constraints along zero-crossing contours. The stereo
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Figure 17. Stereo imtages on NNIhi~1i the iilliti-ic -- :1 toiL:"0o .brl v d.

E v
4r

A. r

-- *. ;'

11 .0



TERZOPOULOS mULTI-LLVF!. SUI-ACJ, I1ECONSTRJCTION

Figure 19. Approximation on tie isolated finest grid after 950 iterations.

N6

algorithm was run on three stereo pairs of images, shown in Figure 17, which were digitized

to 320 X 320 pixels in 256 grey levels. The pairs from top to bottom are A) a synthesized

random dot stereogram of a "wedding cake" of stacked planes, B) natural images of a portion

of a coffee jar sprayed with "random dot" paint, and C) an aerial view of a set of buildings

on the University of British Columbia campus. A three-channel version of the stereo algorithm

was used. The resulting sparse disparity representations were reduced spatially by a factor of

two, and input to a three-level surface reconstruction algorithm whose grids had dimensions
Nh. = Nh, = 41, N ' = N"' = 81, N" .,- Nh. = 161, with corresponding griA spacings

h, = 0.4, h 2 = 0.2, and h. = 0.1. The surface reconstructions in the examples is based on the

raw disparities whose relation to depth is through a nonlinear transformation. Consequently the

shapes of the reconstructed surfaces are distorted to a certain extent.

The sparse disparity constraints provided by the stereo algorithm and the hierarchy of full

surface representations generated by the three-level reconstruction algorithm for the "wedding

cake" stereogram are shown in Figure 18. The value y = 0.5 was used in the algorithm, and the

representations shown were generated after 16.75 work units. The three-dimensional structure of

the planar surfaces is clearly evident at the three resolutions. The results can be compared to

Figure 19 which shows the approximation obtained by a single-grid algorithm on the finest grid,

after more than 900 work units.

Figure 20 illustrat s the sparse constraints and the full surface representations obtained
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Figure 18. Disparity constraints and full surface representations or "wedding cAe".
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Figure 20. Di~parity constraint~s and full surface represenitatios~ of the cofl~c jar.
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Figure 21. Disparity constrainats and surfaces rcconstructeel tromi HIV i~t-i..L view.
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(with -y = 0.1) from the images of the coffee jar.' 3 The reconstruction, required 16.0 work units.

Finally, Figure 21 shows the sparse constraints and the reconstruction obtained from the aerial

view (with -y - 8.0), after 21.875 work units. The representations are displayed as grey level

images, in which darkness is proportional to disparity.

It should be noted from the above examples that the multi-level surface reconstruction

algorithm, in its present form, attempts to reconstruct a single surface over the entire grid. As

a consequence, serious problems arise near sharp changes in depth such as those due to partial

occlusions of surfaces in the scene. rhe reconstructed surface gives the undesirable impression

of a tablecloth thrown over a 3-D model of the scene. The source of this difficulty is discussed

further in the concluding chapter, where possible ways of overcoming it are suggested.

6. GENERALIZED INTERPOLATION PROBLEMS IN VISION

The key to the solution of many problems in early vision is the imposition of constraints based

upon assumptions about the visual world which are almost always true. A common assumption is

that matter is cohesive; ie, that surfaces are continuous over most of the scene. This assumption

is usually introduced in the form of smoothness constraints, such as those characterizing the

most consistent surface in visual surface reconstruction. From our study of this problem, we

have seen that it is appropriate to formulate smoothness constraints within variational principles.

In this chapter, we study a general class of variational principles, and we propose that the

functionals characterizing these variational principles are appropriate semi-norms for formulating

smoothness constraints because they possess several invariance properties which become important

in applications to early vision. In order to simplify the discussion, the analysis will be in terms of

interpolatory constraints and domains of infinite extent. Our visual surface reconstruction problem

will be shown to be a special case of this generalized, optimal interpolation problem which is a

natural generalization of the familiar curve-fitting problem iniolving splines.

The classical spline problem involves the minimization of the quadratic functional

IV' b id X 2,d

under the interpolatory constraints u(z,) = c,, 1 < i < Nc with N, > m __ 1, where the x,

are given distinct points in [a, bJ and the c, are given real scalars. The natural setting for this

problem is a vector space V formed by the class of functions whose (distributional) derivatives

up to order m are in L 2(a, b); that is, the class of functions which are elements of the Sobolev

space of order m over [a,b], ) ([a,b]), defined in Section A.I. 1.1, is a semi-norm which is

derived from a semi-inner product and, equipped with it, V becomes a semi-Hilbert space. The

"In this example, the constraints for the coarser channels were generated by averaging down the
finest-channel disparities.
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conditions imposed on the constraints ensure the existence of a unique solution u C S, where S

is the convex subset of V whose elements interpolate the constraints. The characterization of u

as an odd-degree polynomial spline and various intrinsic properties such as the minimum norm

and best approximation properties follow from the orthogonal projection theorem JAhlberg et al.,

1967] (see also the proof of Theorem A.1).

Duchon [1976, 1977] and Meinguet [1979a, 1979b] describe an n-dimensional generalization

of the optimal, univariate spline interpolation problem. The generalized optimal interpolation

problem involves the minimization of the functional 1.12, where

and m and n art given positive intege.rs. The generalized interpolation problem is naturally set

in a space V of functions which are elements of the Sobolev space )1 ,(Rn).1 4 1'1,. is a semi-norm

whose nul-space'5 is the M n dimensional space of all polynomials over Rn of degree

less than or equal to m - 1: R/ - l-IQR ) [Schwartz, 1966, pg. 60]. Equipped with the

semi-inner product corresponding to 1'1,, V becomes a scini-Hilbert space.' 6

Let the finite set of distinct constraints C = {(xi, ci) 11 < i < N, x, C &, c, E N} contain

a subset of M members such that there exists a unique element p E fl-"-'(R") of the null space

of H-, Ahich interpolates the M constraints in the subset; that is, such that there exists a unique

polynomial of degree m - 1 which satisfies the conditions p(x,) = c, for each j which indexes a

constraint of the above subset. We call such a subset an )!-un;,'olvent subset.

We can pose the generalized optimal interpolation problem in the following way. Given a

set of constraints C which contain an N/-unisolvent subset, find that element u E S such that

Jul' = inf Jvjl
yES

where once again S is the set of functions in V which interpolate the constraints. The problem is

well-posed because we are minimizing a semi-norm within a convex subset S of a semi-Hilbert space

and, furthermore, the existence of an N-unisolvent subset of constraints reduces the null-space of

the functional to at most a single nonzero element of S. A solution u is then guaranteed to exist
and be unique by the orthogonal projection theorem (see the proof of theorem A.1). 17

"More precisely, the space V is the Beppo Levi space [Duchon, 1977; Meinguet, 1979a, 1979b] of order
m over R' defined by BLm(R") - {v I av G L2 forlal = m), where a = (a,,...,a,) is a "vector" of
positive .ntegers and jai = at ± ... + an; that is, it is the vector space of functions for which all the
partial derivatives of (total) order m are square integrable in ". The Beppo Levi spaces are related to
the Sobolev Spaces.

" The rull space of a semi-norm is the space of functions which the semi-norm maps to sero.

'6According to the Sobolev inequality (see section A.l), when m > n/2, V is a semi-Hilbert function
space of continuous functions (Meinguet, 1979a, 1979b].

7Moreover, as a consequence of the Sobolev inequality given in Section A.1, u will be continuous if
m > u/2.

56



TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

Why is the class of semi-norms defined in (2) important in the context of vision? As was

argued recently by Brady and Horn 11981], many processes in early vision are approximately

isotropic and, therefore, it seems that operators which model these processes ought to be

rotationally symmetric. An example of such an operator is the V 2 G edge operator proposed for

computing the primal sketch [Marr and Hildreth, 1980; llildreth, 1980]. The class of semi-norms

defined in (2) is of interest, since all its members fiv,, are invariant under rotation and translation

transformations and, moreover, if a dilation or contraction x -- Xx is applied to v, they are

multiplied by some power of JXi IDuchon, 1977, pg. 86). Therefore, corresponding interpolation

methods will commute with any similarity transformations applied to the constraints. Clearly,

these properties are essential for interpolation processes which contribute to th3 generation of the

2 -D sketch - the surfaces generated by surface reconstruction algorithms should not change

shape as the objects in the scene undergo translations or rotations parallel to the image plane, or

undergo displacements directly towards or away from the viewer.

For certain instances of rn > I and n > 1, the general interpolation problem has familiar

physical interpretations which are most often encountered in a differential form through the

associated Euler-Lagrange equations. Consider first the one-dimensional case, n 1. The

generalized interpolation problem then reduces to the common univariate spline problem of

equation (1). The particular value chosen for m determines the order of continuity of the optimal

curve - as m increases, the smoothness of the solutions increases. In particular, for the case

M - 1, V2 = f,,,2 dx measures the ene; m.y .n a string of infinite extent, and leads to interpolants

having C0 continuity. The associated Euler-i, granL equation is u,, = 0. C' continuity may
be imposed on the interpolant by choosing m= 2. In this case, - fm u dx measures the

strain energy of bending in a thin beam of infinite extent, and the Euler-Lagrange equation is

u,,,. = 0. This class of univariate semi-norms seemns to be appropriate for imposing continuity

constraints in the computation of optical flow along zero-crossing contours in the primal sketch

[E.C. llildreth, personal communication].

Next consider the generalized interpolation problem in two dimensions. For n = 2, the

semi-norms become

IV12fl f 11 , (M(x, nV)2 d.:: I :~,o i ]axiaym-t y

m, once again, determining the degree of smoothness of the solution. For m - 1, -vJ,

f f~2 (v+ - v2) dx dy measures the potential energy related to the statics of a membrane (rubber

sheet), and the associated Euler-Lagrange can be shown to be Laplace's equation, Au = 0

[Courant and Hilbert, 1953, pg. 247]. A semi-norm of this order implicitly imposes the smoothness

constraints in algorithms proposed for computing lightness [Horn, 1974], shape from shading

[Ikeuchi and Horn, 1981], optical flow [Horn and Schunck, 1981), photometric stereo flkeuchi,

19811, etc. With m 2, the smoothness of the interpolating surface is increased to C1 , the
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functional taking the form Iv12 = f f, (V2, + 2v2. + uv') dx dy. This will be recognized as

being our familiar functional representing the strain energy of the thin plate C, with Poisson

constant a = 0 (refer to equation (2.1)), whose Euler-Lagrange equation was shown to be the

biharmonic equation, A 2ut = 0.18 As we have demonstrated, this order of smoothness seems to

be most appropriate in visual surface reconstruction from, e.g., stereo information (refer also to

the discussion on the "quadratic variation" in [Grimson, 1981a]).

It becomes clear that we are dealing with a class of quadratic variational problems, the order

of whose Euler equations is determined by the degree of smoothness demanded of the solutions. For

m = 1 we obtain Laplace's equation in n dimensions, for m = 2 the biharmonic equation, and so

on. In general, the Euler equation is an n-dimensional, linear, elliptic partial differential equation

of order 2m. Moreover, the general interpolation problems have straightforward formulations

as analogous approximation problems. For example, we can define appropriate constraint terms

analogous to the term E5 (equation (2.2)) for our surface approximation problem. Hence, there

exists a general framework in which to solve functional approximation problems, of the type

arising naturally when imposing smoothness constraints in early vision. Meaningful, problems can

be formulated in any number of dimensions, and the degree of smoothness that thu solutions

should possess can be specified a priori. In this sense then, the Sobolev spaces can be viewed

as inge.-ious formalizations of the notion of the "degree of smoothness" of admissiblf functions

and therefore are ideal domains in which to pose and solve these problems. By specifying the

(order of) the Sobolev space to which the solution should belong, we designate its position

in the wide spectrum from very smooth functions to singular distributions. Satisfaction of the

requirements, that the admissible space be a semi Hilbert space and that the constraints include

an )1-unisolvent subset will guarantee uniqueness. Needless to say, the theory of the finite element

method is applicable to either the interpolation or approximation formulations, and it will dictate

appropriate finite element discretization schemes for the associated variational principles.

When solving these variational principles using local, iterative algorithms such as the

ones described in this paper, smoothness constraints are imposed globally over retinocentric

representations by a process of constraint propagation. Inspired by the work of Waltz [1975], a

class of algorithms called relaxation labeling algorithms were introduced as cooperative, constraint

propagation techniques in vision and image processing by Rosenfeld, Hummel, and Zucker [19761.

Although they have seen extensive use [Davis and Rosenfeld, 19811, their generality has made

them difficult to understand and, unlike the techniques and algorithms which are the subject of

this paper, the foundations of most relaxation labeling schemes are unfortunately poorly-developed

mathematically.

'3 Duchon 119771 understandably r'ers to the solutions as thin plate splines which also reflects the
fact that they are natural two-dimensional generalizations of commonly-used univariate splines. In the
engineering literature .they are called surface splines [Harder and Desmarais, 19721.
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Recently, some theoretical understanding has been achieved by viewing relaxation algorithms

as techniques for solving constrained optimization problems (see, e.g., [Ullman, 1979b], 11'augeras

and Berthod, 1981], Illummel and Zucker, 19801). From this new point of view, the relationships

between relaxation labeling techniques and iterative solution of finite element equations arising

from variational formulations become clearer - relaxation labeling schemes can be viewed as

iterative algorithms for solving optimal approximation problems over closed convex subsets (of

possible labelings) [Ilummel and Zucker, 1980]. Necessary conditions for solutions (fixed points)

are then expressed as sets of variationd inequalities [Ciarlet, 1978; Kinderlehrer and Stampacchia,
1980] and appropriate updating rulee are natural generalizations of the classical local iterative

methods for solving large systems of linear [Young, 1971] or nonlinear [Ortega and Rhcinboldt,

19701 equations. Moreover, if the compatibility functions among neighboring nodes are symmetric,

then there exist associated variational principles defining equivalent formulations as minimization

problems. Fortunately, it is possible to apply the finite element method to nonlinear problems

stemming from variational inequalities [Ciarlet, 19781. In a certain sense then, finite elements can be

viewed as systematically-derived, physically-based compatibility relationships among neighboring

nodes. In view of the relationships between the two techniques, it is hoped that aspects of our

multi-level approach to solving the discrete finite element equations for the surface reconstruction

problem may contribute to the theory of hierarchical relaxation labeling [Davis and Rosenfeld,

1981; Zucker, 1978; Zucker and Mohammed, 1979).

7. SUMMARY AND EXTENSIONS

Information about the shapes of visual surfaces that is inferred from the retinal images in

the early computational stages in vision is sparse. Nevertheless, our perception is that of full

(piecewise) continuous surfaces. In this paper we have proposed a hierarchical approach to the

reconstruction of full surface representations, consistent with our perception of the visual world.

The foundations of our paradigm are embedded in a tight mathematical formalism which at

the same time seems sufficiently general to encompass many aspects of the complex information

processing task which is the generation of the full 2 -D sketch.

Visual surface reconstruction was formulated as an optimal approximation problem having

an intuitively simple physical interpretation - a thin flexible plate which is allowed to achieve an

energy-minimizing state of stable equilibrium under the influence of externally-imposed constraints.

This physical model led directly to an analysis in terms of the calculus of variations, and a

proof that the problem is well-posed in practice. The model also suggested a class of techniques

for optimally approximating the continuous solution by an equivalent discrete problem which is

amenable to computational solution. We chose to apply the finite element method for reasons

which include its generality, the availability of a tight theory governing its use, the simple

discrete problem to which it gives rise, and its promise in vision as a systematic methodology
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for constructing local representations of surfaces."v At each step, the underlying mathematical

theory assured us that, ultimately, our problem would have a unique solution that, in principle,

could be computed by biologically-based mechanisms. Our search for efficient algorithms and

our insights into the multi-level structure of the early processing stages in vision led us to a

multi-level algorithm which solves simultaneously a hierarchy of surface approximation problems

spanning a range of resolutions. The local-support processes comprising th,- algorithm include

iterative intra-level relaxation processes, and inter-level processes which serve to communicate

information between levels. The inter-level process include injections from fine grids to coarse

and polynomial inte-polations from coarse grids to fine. Tests on stereo data verified that our

multi-level surface reconstruction algorithm meets theoretical expectations of increased speed and,

moreover, generates a potentially useful hierarchy of consistent surface representations. Finally,

we examined our basic surface approximation problem in a more general setting, and related it

to a broader class of optimal approximation problems based on semi-norms that commute with

similarity transformations applied to the constraints, a property which is important in the context

of vision.

Although we have laid down the foundations of our approach primarily in terms of stereopsis,

the methodology is by no means limited to the type of information produced by this particular

module. Indeed, our point of view speaks to the broader issue of how to combine the information

about ',he shapes of visible surfaces generated by various vision modules into a self-consistent

whole. Several possibilities arise, some of which we will now consider briefly.

The simultaneous assimilation of information from different sourccs can be realized by

defining more sophisticated penalty functions to replace E5 in Chapter 2. For example, in the case

of depth constraints from, say, stereo and motion, we can straightforwardly introduce additional

terms of the same form as 65 for each process. In terms of our plate model, we introduce two sets

of imaginary pins with attached springs, and allow the possibility of a constraint generated by

stereo to coincide with one provided by motion. Imperfections in the retinal images are likely to

affect the two processes in different ways, and moreover each will in its own way sporadically fall

prey to gross misinterpretations of the information in the primal sketches. Whatever the situation,

our physical model assumes an energy-minimizing state, and the resulting surface is an optimal

compromise in view of the constraints provided. In places where the information is consistent, the

final interpretation is reinforced. In places where there is a conflict, it is resolved by competition

with nearby constraints from both processes.

The influence of each constraint may be controlled, possibly dynamically by the processes

themselves, by assigning different values to each spring constant. For example, different confidence

values may be given to individual constraiats generated by the stereo matcher, according to

"On ibis itter point we should mention again that the finite element method allows us to handle
domains of complez shape, natural boundary conditions, and to set up nonuniform discretisations of the
domain - e.g., to vary the resolution across the domain.

60



TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

regional statistics of the rate of successfully matched zcro-crossings, which may hav,, to be

computed anyway [Marr and Poggio, 1979; Crimson, 1981a, sections 2.5 and 3.4]. The eKtcit of

the constraint's influence on the surface may also be varied by extending our model to that of

an inhomogeneous plate, whose flexibility varies over the domain. Numerous possibilities exist for

defining weighting functions to apply to the strain energy density of the plate. All such proposals

for modifying the form of the functional must be first be shown to lead to well-posed problems,

by extensions of the analysis carried out in Chapters 3 and 4.

Another important issue is how to incorporate information other than neasurements of the

distance to the surface. An important class of processes generate cues about visual surfaces in

the form of local orientation measurements. Examples in this class are the analysis of occluding

contours [Marr, 1977], as well as "shape-from" processes such as shape from shading Illorn, 1975],

contours and texture [Kender, 1980; Stevens, 1981; Witkin, 1991], regular patterns [Kanade,

19811, etc. The finite element method provides a general way of handling orientation constraints

through the use of elements with degrees of freedom which include the first partial derivatives of

the surface. An appealing example is Adini's rectangle which was described in Section 4.1. Surface

representations based on this element would make explicit the information about the local slope

of surfaces, as well as their distance from the viewer. Discrete problems derived by applying this

element would correspond to a coupled system of two discrete Euler-Lagrange equations for the

plate, a fourth-order equation for the displacements at the nodes, and a second-order equation

for the slopes. On the other hand, we pay a price for this added capability - the dimension of

the finite element space is tripled, making the resulting discrete system even larger. Nevertheless,

the price may turn out to be worth paying in order to obtain useful surface representations

and, moreover, it may not be too high when massively parallel computational mechanisms are

contemplated.

A different way of handling orientation constraints which can be used with our simple

quadratic elements is, once again, by the use of appropriate penalty functions. In terms of our

model, we can imagine the situation for a single constraint and a surface patch as illustrated

in Figure 22. Here, we attach a spring between the surface normal, an imaginary quill rigidly

fixed to the plate's surface at a particular point, and the orientation constraint, another quill

emanating from the same point, but having a fixed orientation in space. Given this arrangement,

the surface is "pulled" locally so that its orientation tends to align with that of the constraint.

The appropriate penalty term is the potential energy in the spring. This energy can be expressed

straightforwardly in terms of the first partial derivatives of the quadratic surface patch within

the element, and ultimately in terms of the node displacements.

A more immediately important issue, one that was raised in reference to the examples of

surface reconstruction presented earlier, is that of dealing with depth discontinuities. In its present

form, the surface approximation algorithm can deal in a meaningful way with scenes containing
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Figure 22. Physical model of the effect of an orientation constraint.

orientation constraint

surtace normal

only a single surface. This is due to the fact that it does not incorporate the notion of an occluding

contour; that is to say, it attempts to fit a single surface over the whole sparse 21-D sketch,

interpolating indiscriminately across contours which correspo.d to places where surfaces in the

scene occlude one other from the viewer. Clearly, this action is inappropriate since the surfaces

on either side of the occluding boundary ought to have no influence on one another. Moreover,

the variational principle for surface approximation was based on the small deflectio theory of

the plate20 and, consequently, we expect our surface to behave strangely in the vicinity of a large

change in depth, resulting in, for example, a Gibb's phenomenon similar to that observed when

approximating discontinuous functions with Fourier series.

How can these depth discontinuities be detected and how do we prevent interpolation

across them? Grimson [1981a, section 9.4] noted the importance of this question and made some

speculations about possible answers to the first of its two parts. The feasibility of his suggestions

remains an open question. Here, we would like to propose another approach that is agam suggested

- by our physical model. In places of sharp changes in depth (or surface orientation), the strain

energy in the plate will be locally high. Measuring this energy locally is a simple matter - we use

the enErgy inner product to compute the strain energy norm a (vh, 0 h) over the elemrnet domains.

Points of high strain energy are likely candidates for inferring the presence of discontinuities in
2oThe large deflection plate bending theory is considerably more compl!-ated and leads to an

Euler-Lagrange equation in the form of two coupled, nonlinear, fourth-order partial differental equations
known as von Karmann's equations (see, e.g., [Landau and Lifahitz, 1970] or [Mansfield, 1964])

62



THIMZ)POUI.OS MULTI-LEVEL, SURACE RECONSTRUCTION

depth. We can also exploit our exp(:ctations about the world for added constraint, and assert

that, since most of the retinal image is made up of coherent surfaces, occlusions in depth are

likely to form conitours in the image and not be sparsely-occurring points. Hence, we look for

contours along the surface of the plate, where the strain energy is high. Having located the

occluding contours, the answer to the second part of the question is simple, in principle. To

prevent interpolation across different surfaces, we "break" the plate along occluding contours.

Mathematically speaking, this is done by removing plate elements along the occluding contour,

thereby introducing free boundaries.

Our multi-level approach to surface reconstruction constitutes a computational paradigm

which has contributed toward a more complete understanding of the generation of the 21-D sketch.

Many details such as the combination of information from the various modules in early vision and

the isolation of depth discontinuities remain to be worked out rigorously witlin the paradigm. In

addition, a number of exciting issues are raised. For example, how can the hierarchy of surface

representations generated by the algorithm be used to advantage during later computational

stages in which three-dimensional, object-centered representations are generated and objects are

recognized. Similar implications directed to the related field of robotics and manipulation also

suggest themselves. Research addressing some of these issues is currently in progress.

ACKNOWLEDGEMENTS

I would like to thank Shimon Ullman for pointing out the literature on multi-grid methods
and suggesting the possibility of their application to visual surface interpolation. Mike Brady,
Eric Crimson, Tomaso Poggio, Whitman Richards, and Shimon Ullman contributed to the work
through numerous valuable discussions. In addition, Eric Crimson generously provided technical
assistance with his stereo vision software for the LISP Machine. Drafts of this paper were read by
Mike Brady, Eric Crimson, Ellen Hildreth, Berthold Horn, and Shimon Ullman. Their comments
are appreciated greatly.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-80-C-0505 and in part by National Science Foundation Grant
79-23110MCS. The author was supported by postgraduate scholarships from the Natural Sciences
and Engineering Research Council of Canada and from Fonds F.C.A.C. pour l'aide et le soutien
i la recherche, Qu6b6c, Canada.

63



TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

A. THE FINITE ELEMENT METHOD

When itj.is impossible to derive an analytical solution to a continuous variational principle,

it is usual to attempt an approximation by defining a discrete problem which is similar to the

continuous one and which leads to a discrete solution. To this end, we will first state an abstract

variational principle which will lead us to an optimal approximation to the exact solution. The

variational principle is called abstract inasmuch as it represents a formulation which is common to

a variety of physical problems, such a!; the physical model for our surface reconstruction problem.

We will also state theorems which give conditions guaranteeing the existence and uniqueness of

the approximate solution and, in addition, we will discuss the optimal properties of the proposed

approximation.

The abstract variational principle and the associated theorems are stated in a form which is

convenient for the application of the finite element method, a powerful technique for obtaining, by

numerical means, discrete solutions to variational problems.' The following sections develop the

mathematical machinery which we will -equire to successfully apply the method. Key mathematical

ideas include a set of Hilbert spaces (th. Soboley spaces) and their norms, a bilinear form (the

energy inner product) which is naturally associated with the specific problem, and certaun optimal

properties of the (Ritz) approximation over finite dimensional subspaces. These ideas lead to

a clean and precise theory governing the application of the finite clemect method, cven for

complicated geometries. Comparatively tight theories are unavailable for alternate approximation

techniques which naturally arise from nonvariatiornal problem statements; e.g., the finite difference

method which can be applied to equivalent formulations in terms of differential operator equations

(such a:; Euler-Lagrange equations). Excellent accounts of the mathematical theory of the finite

element method are [Ciarlet, 1978], [Oden and Reddy, 19761, and [Strang and Fix, 19731. An

extensive development from an engineering point of view is presented in [Zienkiewicz, 19771.

A.1. The Sobolev Spaces

, : Fundamental to finite element analysis are a set of spaces called the Sobolev spaces (see,

. e.g., [Agmon, 1965], [Adams, 1975]). They are a generalization of the familiar L 2 space which

consists of all functions v: fl C R' h-4 Y? (where D is a bounded domain) whose L 2 norm over n

is finite. We denote the partial derivatives of v by the notation

a" v(e) b ort13

'The finite element method was conceived by Courant 11943).
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where 0 =a (a,..., an) is a multi-index of positive integers a,.2 The Sobolev norm of order m

over 11 combines the L2 norms of all partial derivatives of v up to order m:

(au 2 dx)

where lal = al + "+ an. Tile Sobolev space of order m over fl is then defined by

k'"(11) = {v I 1IVl,, < oo}. (2)

Clearly, )O = L2.

We will also require the associated semi-norm

It)1,0 5  =( m i a-vi 2 dX) (3)

which includes only the derivatives of order m exactly. It is a semi-norm because it is zero if

v . E H...(1), where II -1" is the space of polynomials of degree m - I defined in fl

[Strang and Fix, 1973, pg. 2981.

Since the Sobolev norms are sums of L2 norms, they have associated inner products and,

thercfore, the Sobolev spaces are Hilbert spaces.' Lct Cq(fl) denote the class of functions which

have continuous partial derivatives of all orders up to order q. A fundamental embedding property

of the Sobolev spaces is given by the Sobolev inequality which states that CQ C ) '" if and only

if m - q > n/2, where n is the dimension of lltn.

A.2. An Abstract Variational Principle

Let V be a normed vector space with norm I and S be a nonempty subset of V. Moreover,

let a(., .): V X V -+ R be a continuous bilinear form and f: V i- R be a continuous linear form.

Definition I - abstract (quadratic) variational principle

The problem: find an element us such that

us E S and (u') = inf F(vs), (4)

where the functional 6: V -- R is defined by

M( a (v, ,,)- f (v), (5)
2

2The derivatives are to be interpreted in the generalized (distributional) sense, but when a derivative
exists in the classical sense, it is equal to the generalized derivative (see, e.g., [Schwarts, 1966]).
3Extensions of the definition of Sobolev spaces and norms have been made to negative and nonintegral

order m (see, e.g., jAgmon, 1965), [Adams, 19751).
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will be referred to as the abstract variational principle.

Theorem 1 - existence and uniqueness

Assume in addition that

(i) the space V is complete,
4

(ii) S is a closed convez subset of V,

(iii) the bilinear form a(., -) is symmetric,

(iv) a(., .) is V-elliptic; i.e., there exists a constant a > 0 such that

Vv (: V, a(v, v) > ailvll, (6)

then the abstract variational principle has a unique solution u s E S.6

Proof. [Ciarlet, 1978, pg. 3] The bilinear form a(., .) is an inner product over the space V. Since

it is continuous, 'it is bounded,7 and because it is also V-elliptic, there exist constants a and U

such that alvl 2 < a(v, v) MIIV1 2 . Therefore, the norm associated with the inner product is

equivalent to the given norm ['1, and V becomes a Hilbert space when it is equipped with this

inner product. According to the Reisz representation theorem (see, e.g., 1Oden, 1979] or [Yosida,

1971]) there exists an element u G V such that

Vv E V, f(v) = a(u, v), (7)

and because a(., -) is symmetric,

E(v s ) = l vs, v s ) - a(u, v s )  -a(vS2 - u, v s - u) - a(u, u).

Therefoe, the minimum of E(v 5 ) and the minimum of a(vs - u, vs - u) as v s ranges over the

set S are achieved by the same element u s E S. In other words, solving the abstract variational

principle is equivalent to finding an element us E S which is closest to u with respect to the

norm a(., ")i:

a(u - us , u - us)f = inf a(u - v s , u - vS)i. (8)v8ES

By the ;rojection theorem, (see, e.g., fOden, 1979] or [Yosida, 1971]) the solution is the projection

of u onto S with respect to the inner product a(., .), and its existence and uniqueness is assured

by the fact that S is a closed convex subset of V. 1

4 That is to say, it is a Banach space.
5V-ellipticity means that the bilinear form is positive definite; i.e., a(v, v) = 0 if and only if v = 0.
6 Theorem 1 is a generalisation of the familiar theorem for the existence of a unique solution to a

(quadratic) minimization problem in mathematical programming (see e.g. JLuenberger, 1973]).
7A bili:iear form is continuous if and only if it is bounded; i.e., there exists a constant A such that

(a(u, v)) :_ -JlulJJtvlJ lRektorys, 1980, pg. 111].
"Two iorms 11'1 and J!'j' on a linear vector space V are called equivale-.t if the corresponding

metrics are equivalent. This amounts to the existence of two positive constants c1 and c2 such that
C1 ilVil _< IlV1J' !_ C2!lVll.
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The abstract formulation encompasses linear variational problems which are posed classically

in terms of variational principles involving the minimisation of quadratic functionals e(v) =

Sa(v, v) - f(v) over an admissible space of functions v E V. Such functionals often represent the

potential energy of a physical system, a(v, v) being the second-degree term which is the strain

energy in the function v (f(v) is a first-degree term). The associated inner product a(v, w) is the

energy inner product which is intrinsic to the particular variational principle, and is defined for

all admissible functions v and to.

It is clear from the above discussion that the admissible space V must be complete and that

6(v) must be well-defined for all v E V (i.e., that V must be a space of finite energy). The Sobolev

spaces fulfill these conditions. Their use as generalized energy spaces is natural in the sense that,

for a given variational principle, the energy inner product is well-defined over a Sobolev space

N', where m is the highest order of partial derivative of v which occurs in a(v, v). In general

then, V is the space M' whose natural norm is the Sobolev norm 11'11mn.

The role of the subset S is in approximating the exact solution u. Although u is usually

impossible to obtain over the full admissible space V, it may be relatively straightforward to

optimally approximate it by an element u' E S, especially if S is taken to be a closed subspace

cf V. The approximation is optimal in the sense of equation (8). In the ensuing discussion, we

will restrict ourselves to the special case where S is a closed subspace of V. The approximate

solution of the abstract variational principle may then be characterized by the following theorem.

Theorem 2 - variational equation

If S is a closed subspace of V, then us E S is a solution of the abstract variational principle

if and only if it satisfies the variational equation

Wvs E S, (cs, vs) = f(S). (9)

Proof. If us minimizes " over S, then for any e and vs E S,

C(us) < e(us + evs) =la(us + evs + evs) _ f(Us + (s)

T r(us) + efa(u5 , vs) - f(vs)] + 1e2a(vs, vs).

~Therefore,
1 _2 _ , S)

0 < e[a(u,, vs) - (vs)] + 2 a(u V),

and since this must be true for small e, both positive and negative, it follows that a(us , vs )

f(vs).9  I

'In the general case where S is not a closed subspace, but is only a closed convex subset of V
as required by condition (ii) of Theorem 1, the solution uas must satisfy the ,eriahion. ineqelsit
a(us, vs - us) f (v-" - u5 ) jCiarlet, 1978, pg. 3].
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We will now discuss some important properties of the solution of the abstract variational

principle. First, from the proof of the theorem, it is clear that (9) is the well-known condition

for the vanishing of the first variation of e at u s , in the direction of vs. In particular, if S is the

whole space V, then the solution satisfies

a(u, v) = (v), (10)

and the first variation at u vanishes in every direction v. Setting u = v, we have a(u, u) = (u)

and hence

I I
6(u) Q(u,, U) - f(u) = - a(u, ,u);

2 2

i.e., at the minimum, the strain energy is the negative of the potential energy. Now, e(u) F &(us)

since u is minimal over a wider class of functions. Then,

Q(u5 , us) _ a(u, u),

and so the strain energy in us always underestimates the strain energy in u. Moreover, since us

is the projection of u onto the subspace S, the error es = u - u s is orthogonal to S:

a(es , vs) = 0 Vvs E S.

In particular, a(es, us ) = 0 or a(u, us) - a(u s , us) and

a(e5 , es) - a(, u,) - a(us , us);

i.e., the energy in the error equals the error in the energy (the Pythagorean theorem holds).

A.3. The Ritz Approximation

The key condition in the hypothesis of Theorem 2 is that the subspace S be closed. How can

we ensure this? One possibility arises from the fact that finite dimensional subspaces are always

closed. A number of classical methods for solving variational problems, called direct methods, are

based on this." One of these, the (Raleigh-) Ritz method [Ritz, 1908; Mikhlin, 1964; Rektorys,

19801 is of fundamental importance when a variational principle is involved. In the Ritz method,

we chocse a finite dimensional subspace

N

S = S h = (Vh I Vh = Zvs,) (11)

where 1i,... ,N are independent basis functions which span Sh and v1 ,...,VN are unknown

real parameters.

l0 Direct methodo include the metho. of weighted residuals whose special cases include colocation methods
and the G.lerkin method, the method of orthonormal (e.g., Fourier) series, and the least squares method, (see,
e.g., [Finlayson, 1972). jMikhlin, 1964), [Rektorys, 1980), JZienkiewics, 1977]).
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By Theorem 1, the approximate solution to the variational principle is the unique element
uh E Sh which is the projection of u onto Sh. This amounts to choosing parameters v, which

satisfy the discrete variational principle

(uh) inf (Vh) inf 1 N N N

S v ....., Z r4a(2,,

or, by Theorem 2, the associated variational equition

Vvh c sh ,  a(uh, vh) = f(Vh)

which is, in fact, a linear system of algebraic equations

N

. a(O,, 0K)u, = f(.,), 1 < i < N.

These equations can be written in the compact matrix form

Au = f, (13)

where A E DNN [a(o,, 0j)] and where fc RN = [f( ,)] and u'E IN = ]u,], called the discrete

variational equation. Since the matrix of coefficients A is nonsingular, the discrete solution is

given by u = A' f, although for the problem at hand A is huge, so it is usually impractical

to compute A - ' directly. In the next section, we describe special types of basis functions which

ultimately lead to practical iterative solutions.

A.4. Finite Element Spaces

The Ritz method has given us a discrete solution u N %uq which is optimal in the

sense that the energy in the error, as measured in the natural energy norm a(u - uh, u - uh)i,

is as small as possible. In the classical Ritz method, the basis functions 0, are generally chosen

to be fairly complicated functions which have global support over the domain in question (e.g.,

trigonometric functions) [Mikhlin 1964; Rektorys, 1980]. Although this choice may be beneficial

for analytic purposes, it renders the method unsuitable for numerical computation. The problem

is overcome by the finite element method which is a systematic procedure for constructing finite

dimensional approximating subspaces Sh, called finite element spaces, which are very convenient

for numerical computation. In certain forms, the method may be considered to be a special

instance of the Ritz method in which the basis functions are simple functions having local support.

In the ensuing discussion, we will restrict ourselves to a domain f0 which is a polygon in R 2 with

boundary 8f] .11 The following are basic characteristics of the construction in its simplest form:

(i) A "triangulation' TA is established over the domain: C) = UEECT' E; that is, the domain
is partitioned into the union of subdomains E E Th called finite elements, such that the E
are closed sets with nonempty interiors and polygonal boundaries. TL, elements are usually

"The theory has been extended to domains with curved boundaries in any number of dimensions.
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adjacently-placed triangles or rectangles which overlap only at the inter-element boundaries.
Associated with the triangulation is its fundamental length h.12

(ii) The elements are considered to be interconnected at a discrete number of points on the
inter-element boundaries which are called the nodes of the triangulation. The unknown real
parameters of the discrete problem are the nodal variables, the values of tile solution (and/or
possibly of its derivatives) at the nodes.

(iii) Associated with the triangulation is a space of functions Sh defined over fl. Defined within
each element E is a finite dimensional space Pr = Sh) consisting of functions
'which are polynomials (or ratios of polynomials). The polynomials pE C P E represent a local
approximation of the solution within E, and are uniquely determined by the nodal variables
associated with the element.

(iv) In certain elements, the functions pE may have to satisfy the essential loundary conditions
of the problem.

While the classical Ritz method is limited to geometrically simple domains fl, in the finite

element method this limitation occurs only within the element itself. Consequently, it is possible

to "assemble" complicated configurations from simple element shapes. Several factors contribute

to the success of the finite element method from a computational point of view. Firstly, due to

the fact that in the element interiors the solution is approximated by a low-order polynomial in

z and y, the computations required to compute the discrete functional in (12) or, equivalently,

to compute the entries of matrix A of the discrete variational equation (13) are often simple.

Secondly, it can be shown that, associated with the local polynomial functions, there exists a

canonical set of basis functions 0, spanning S' which are also piecewise polynomials and which

have local support. A will therefore be sparse and banded; that is, most of its relatively few

nonzero entries will lie near the main diagonal. Thirdly, when the problem is well-posed in terms

of a variational principle, a(., -) will be symmetric and S"-elliptic, which guarantees that A will

be nonsingular, symmetric, and positive deftnzue.. In addition to these clear merits, piecewise

polynomials are remarkable in that they are optimal in terms of their approximation properties

and in that these properties are essential for proving convergence of the method [Strang and Fix,

1973, pg. 153].

The convergence properties of the finite element method are an important issue. The object

of the Ritz method is to find optimal values for the nodal variables (which are the parameters of7the discrete solution) by minimizing the discrete functional C(uh). This suggests immediately the

possibility of approximating the exact solution u by a minimizing sequence of discrete solutions to

discrete problems associated with a family of subspaces Sh whose fundamental length h has limit

zero. Although the approximation is known by (8) to be optimal in terms of the norm a(., .)*, it

is more convenient to analyze the error in terms of the natural Sobolev norm 11'11m of V C M--

The following theorem gives a sufficient condition for the convergence of such a sequence.

12The fndameutal length h of the triangulation T' is the maximum radius" of the elements. AN the

subdivision is made finer, the number of elements increase and h - 0.
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Theorem 3 - Cea's Lemma

Since there exists a constant C independent upon the subspace Sh such that

Hu-uhIll < C i IluV- v1, (14)- hESl

then a sufficient condition for convergence is that there exists a family Sh of subspaces of the

space V such that, for each u E V, limho-011u - u"ii = 0; i.e.,

Jim inf Iju - v'1 - 0.
h-0 VOES"

Proof. Equation (14) follows from (8) due to the continuity and V-ellipticity of a(., .). Moreover,

C L is a constant independent upon the subspace Sh. *

We see then that an estimation of the error reduces to finding the distance between the exact

solution u and the subspace Sh - a problem in approximation theory. The basic hypothesis about

the finite element space S h was that the finite-dimensional space pE within each element E is a

space of polynomials. If we assume that the space contains the complete polynomials of degree k

(i.e., pk C P"'), it can be shown in general that the approximation error in the sth derivative,

where s 3 m, is of the form

Hu - uhl[, - O(hk+ - a + h 2 (k+ - 'm)) (15)

[Strang and Fix, 1973, pg. 1071. On the other hand, because the approximation minimizes the

strain energy, the order of convergence of the mth derivative is better. It is order h2(k+l - ').

The convergence properties implied by C6a's lemma are contingent upon the finite element

spaces Sh being subspaces of the admissible space V. In view of this, if the energy inner product

a(v, v) involves partial derivatives of v of order m so that V C N'"(0), ensuring convergence

amo:i-ts to imposing the following two requirements on the local functions pE:

(i) Completeness condition: As the size of any element tends to zero, the function pF- must be
such that a constant value of the m"-h Jerivative will be attainable in the element subdomain;

. i.e. we must have k > m so that pE C I'(E), VE E rh.

* (ii) Conformity condition: All derivatives of pE of order less than m must be continuous across
inter-element boundaries; that is, S h C Cm-(A).

The two requirements are necessary and sufficient for Sh C )X(fl) when the pE are polynomials

(or ratios of polynomials). Another way of stating the completeness condition is that the local

polynomials must be able to reproduce a state of constant strain - any solution which is a

polynomial of degree m. When the local polynomials satisfy the conformity condition, the elements

are called conforming finite elements, and their use leads what are referred to as conforming finite

element methods.
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A.5. Nonconforming Elements

In the above discussion, we assumed that conforming finite element methods approximate

the solution u of C()= infvEs 6(v) by the solution uh of C(uh) = inf#esh C(vh) where Sh

is a subspace of S. This is a global condition on the approximation which is often violated for

reasons of computational convenience. For instance, it may be violated by dropping the element

conformity condition.13 Elements which do so are called nonconforming elements. They are often

used in practice for higher-order problems because conforming elements for such problems are

unnecessarily complicated or must have a large number of degrees of freedom in order to satisfy

the inter-element conformity conditions.

If nonconforming elements are used, it is clearly impossible to evaluate the true energy

functional (vh),. due to the singularities in the mth derivatives of Vh which occur at the element

boundaries. To avoid this problem, we can simply ignore the discontinuities between elements by

computing the strain energies within each element and then summing the individual contributions;

that is, for the original energy inner product a(., .), we substitute the approximate energy inner

product ah(., .) defined by the bilinear form

uh(., )= j a(., )IE, (16)
EETA'

where the notation IjE means a restriction o the element domain. The approximate variatWnal

prtnciple is then the problem of finding a u h E Sk which minimises the functional
1

rh(h) I h(V , 0 h) _ f(h), (17)

and the necessary condition for the vanishing of the first variation becomes

vv/' E Sh , ah(uh, vh) = f(t,h). (i8)

Following in the spirit of the conforming case, we must determine sufficient conditions for

the existence and uniqueness of the solution uh to the approximate variational principle, as well

as under what conditions this approximate solution converges to the exact solution u as h -. 0.

9:4 lThe conditions are natural extensions of Theorem 1 and Cda's lemma, and are given in the

" following theorem.

if

(i) there exists a mapping II'lh: Sh -. S which is a norm over S1,

(ii) ah(', ") is bounded and Sh-e~liptie, in that there exists a constant ap, > 0 such that

t13This violation is an example of a so called variational crime fStrang and Fix, 1973, Chapter 41.
Besides violation of the element conformity condition, variational crimes also in'.'ude inexact evaluation
of the functional 6(0 ) (i.e., of the quadratic form a(u', ,) and linear form f(ti)) such as by numerical
integration, as well as various techniques for the approximation of essential boundary conditions.
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VVh E S h, ,h(V, h) >_ ,hIvhI(.,

then the approximate variational principle has a unique solution uh E Sh .

Proof. Refer to the discussion in [Ciarlet, 1978, Chapter 4]. 1

On the other hand, to obtain convergence, we impose a stronger condition, uniform S llipticity,

which requires that there exist a constant & > 0, independent of h, such that

VSh, Vvh E Sh, ah(vh, vh) h &lvhll . (19)

Convergence is then guaranteed by the following theorem.

Theorem 5 - Strang's lemma

Given a family of discrete problems for which the associated approximate energy inner

products are uniformly Sh-elliptic, then there exists a constant C, independent of S', such that

I11 - uhllh < c(inr 1Iu - vhljh + SUP lah(u, wh) - f(Wh)l (20)

Proof. See [Ciarlet, 1978, pg. 210]. 3

Strang's lemma is a generalization of C~a's lemma for conforming elements - in addition

to the usual approximation error term, we have the (inf) term which measures the consistency

error of the nonconforming space. Since the difference ah(u, W h) _ f(Wh) is zero for all Wh E Sh

when Sh C V, the consistency error for conforming spaces is identically zero and Strang's lemma

reduces to Cda's lemma. However, for the nonconforming case, convergence is obtained if the

consistency condition,

lim SU P a,(u, "w h) - f(wh) 0 = 0, VV E Sh, (21)

h-0 wAESA' 11W'llh

is satisfied,

The consistency condition was first recognized empirically and was stated in the form of a

simple test known as the patch test. Subsequently, Strang proved mathematically that the patch

test was indeed a test for consistency and, by essentially making the above arguments, that

nonconforming elements which pass it will yield convergence (see [Strang and Fix, 1973, Chapter

41). The test remains a convenient one to apply.

Theorem 6 - the patch test

Suppose that the energy inner product Qh(u, v) contains derivatives of order at most and

the nonconforming apace S contains all polynomials Wm of degree at moat m. If the nonconforming

finite element method recovers all solutions which are polynomials of degree at most m, then the

patch test is passed, and limh-011u - Ulh h 0.
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In other 'words, suppose that we put an arbitrary patch of nonconforming elements associated

with the nonconforming space Sh in a state of constant strain; that is, we uipose Vh~ = m. E rl'

on the displacements at nodes around the patch boundary. Because the completeness condition

of the previous section is still binding on nonconforming elements, this polynomial is both an

element of S' and an element of V, hence its consistency error is sero. The conforming (Ritz)

solution to (12) or (13) and the nonconforming, discrete solution of the approximate variational

principle ought then to be identical and equal to wi.. The test is to determine whether this is

indeed the case.
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B. ITERATIVE SOLUTION OF LARGE LINEAR SYSTEMS

The approximation of a variational principle by direct methods such as the finite element

method (or the approximation of a boundary value problem by finite differences) gives rise to a

system of simultaneous algebraic equations. For quadratic functionals (or linear boundary value

problems), the system will be linear. In this chapter, we consider the problem of solving, by

iterative means, systems of linear equations of the form

N
F, ai,,, = I, <,i < N, (1)

j-1

where the coefficients a,, and the values f, are known. The system may also be written as the

matrix equation

Au = f, (2)

where A E ]NN [a,] is a nonsingular matrix and where fE RN - [f] is a column vector. We

wish to solve the system for the column vector u E IRN = [u,] = A--f. In applying the finite

element method to our visual surface reconstruction problem, we Will obtain large sparse matrices

A. In this appendix we will be concerned with numerical methods which are capable of solving

such systems where N is in the range of, say, 103 -- 106, or larger.

An iterative method for solving equations (2) computes a sequence of approximations

U(I), U(2).... to the exact solution u. A new, and hopefully better, approximation is computed

at each iteration, but, in general, the exact solution cannot be obtained in a finite number of

iterations. If, regardless of the initial approximation u(°), 14 the approximation error (i.e., the

difference between the exact solution and the approximations, measured in some appropriate norm)

tends to zero as the number of iterations increases, the iterative method is said to be convergent,

and the rate at which the approximation error tends to zero is called its rate of convergence. In

order that an iterative method be of practical use, it is important that it be convergent, and that

it exhibit a sufficiently large rate of convergence to an approximation of prespecified accuracy.

In this appendix, we review a number of the most common iterative methods, and examine their

convergence properties and their rates of convergence. References for this material are [Forsythe

and Wasow, 1960], [Smith, 1977], (Varga, 19631 and [Young, 1971; Young and Gregory, 1972,

1973].

B.1. Basic Relaxation Methods

Let us assume that A has nonzero diagonal elements. It will be convenient to express A as

the sum

A = D - L - U,

"The trivial initial approximation u( ) - 0 Is usually chosen.
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where D E KNN is diagonal, L E RNN is strictly lower triangular, and U E RNN is strictly upper

triangular. Clearly the equations in (1) can be rewritten in the following form:

aju-- a,,+I, 1<i<N.

Next, we will define three basic iterative methods for solving (2), popularly known as relaxation

methods in the context of the numerical solution of partial differential equations.

Jacobi Relaxation

The Jacobi method (or the method of simultaneous displacements) is defined by
U{k+l) (k)

ai - a,,u;.) + f,, 1 < i < N,

which can be written in matrix form as

Du(k + l) = (L + U)u(k) + f,

thus giving us the iterative scheme

u(k+ ') = D- 1 (L + U)u(k) + D-1 f. (3)

The matrix

Gj = D-'(L + U)

is called the Jacobi itc.ation matrix associated with matrix A.

Clearly, the Jacobi method is a parallel method because the elements of the new approximation

u(k+1) may be computed simultaneously and in parallel by a network of processors whose inputs

are elements of the old approximation ulk). As such, it requires the storage of both the old and

the new approximations.

Gauss-Seidel Relaxation

Convergence of the Jacobi method is usually very slow. In a closely related method, the
so called Gauss-Seidel method (or the method of immediate displacements), the elements of the

new approximation are used in subsequent computations immediately after they become available.

This increases the rate of convergence somewhat, but typically less than an order of magnitude.

The equations are written as

sil N
a . f+l) iI k N)
,,-u =- a ' ) - a ,,"') + fI, I < < N,

which, in matrix form, becomes

Du(k+i) - Lu(k+i) + Uu(k) + t, (4)
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from which we obtain the iterative scheme defined by

u(k+1) = (D - L)-IUu(k) + (D - L)-f. (5)

The Gauss-Seidel iteration matrix associated with matrix A is therefore given by

Gs = (D - L)-U.

In the Gauss-Seidel method, we no longer need to store simultaneously the old and new

approximations. As they are computed, the new elements can simply displace the old ones.

Moreover, since the new values are exploited immediately in subsequent computations we can

intuitively expect a higher rate of corvergence compared with the Jacobi method. On the other

hand, it can easily be seen that the Gauss-Scidel method is inherently a sequential method which

renders it unsuitable for implementation as a parallel network.

The Successive Overrelaxation (SOR) Method

The convergence of the Gauss-Seidel method may be accelerated by a simple modification.

Let us define the dynamic residual vector15 at the kth iteration of the Gauss-Seidel relaxation

method as

r(k) = U(k+l) _ u(k)

= D-(Lu(k+i) + Uu(k) + f) -u (k)

(see (4)). Then, it is evident that the Gauss-Seidel scheme can be written in the form

u(k+±) = u( k ) + r(k).

If the elements of all successive residual vectors are one-signed (as they usually are when

approximating elliptic problems), then it is reasonable to anticipate an acceleration in the

convergence of the Gauss-Seidel scheme if the residual vector is scaled by a fixed real number

w > I before it is added to u( k) in each Gauss-Seidel iteration. w is called the relaxation parameter.

This idea leads to one of the most successful iterative methods for solving systems of linear

equations currently available, the successive overrelazation method. The method may be defined

by

u(k+1) = u(k) +±wr
( k )

= u(k) + w[D-I(Lu(k+I) + Uu(k) + f) _ U(k)],

which we can manipulate into the form

u(k+l) = (I - wD-L)- ' [(1 - w)l + wD- 1 U]u(5 ) + (I - wD- 'L)-IwD- 1 f. (6)

The successive overrelazation iteration matrix is therefore given by

G,, = (I - wD-'L)-(1 - w)I +wD- 1 U).

"The residual vector is also called the correction or displacement vector. Note that the residual of an

equation is the amount by which the equation fails to be satisfed.
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Three cases arise:

(i) if w > I the scheme is called overrelaxation, 16

(ii) if w = 1 we obtain the Gauss-Seidel method, and

(iii) if 0 <w < 1 the scheme is termed underrelaxation.

Conditions for Convergence

The Jacobi, Gauss-Seidel, and successive overrelaxation methods are particular instances of

the general stationary iterative method

u ( k + l )  GO~) + c, (7)

where the iteration matrix G is taken to be Gj, Gc;s, and G. respectively, and c is a known

column vector.17 By subtracting u Gu + e from (7), we can obtain an expression for the errors

ek) = 11() - 1 of successive approximations,

e(k+') Gek)
- Gk+e(o). (8)

The sequence of approximations converges to the solution u if limk. e(k) -- 0, which will

clearly be the case if and only if limkO.G k = 0, since u (° ) (and hence e(° )) is arbitrary. Let

G have eigenvalues X1, \ 2 ,. .. ,X.N, and assume that the corresponding eigenvectors v,v 2 ,... ,vN

are linearly independent. Then the initial error vector can be expressed uriquely as the linear

combination

N

e 0 ) civt.

But, by (8),

e(k) - Gke(O)
N= eGkvi

N

ZCiXkV,.
It follows that in the limit, e(k) will be zero for an arbitrary initial approximation if and only if

JX, < I, for 1 < i < N. Thus, we have the following theorem.

'"it should be noted that there exist classes of matrices (which arise from many first and second
order partial differential equations) for which the optimal value of w, yielding the largest rate of
convergence, may be determined analytically (see e.g. )Young, 1972), IYoung and Gregory, 1973]). Often,
the convergence may be adequately accelerated by not necessarily optimal values of w chosen empirically.
Of course, it is possible to vary w from iteration to iteration or from one equation to the next. A
number of these modified methods have been studied in the literature (see e.g. [Varga, 1962 or [Young,
1971; Young and Gregory, 1972, 19731).
"t The method is obtained by writing the original system Au = f as a Go + e, and is referred to as

beinS stationary because G is fixed for all iterations.
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Theorem I - necessary and sufficient condition for convergence of the stationary iterative method

The stationary iterative method (7) is convergent if and only if

N
p(G) w ,nax IX,(G)I < 1,

where p(G) is called the spectral radius of G. 8

Theorem 1 is mainly of theoretical value because, in practice, it is difficult to determine

the eigenvalues of G. Fortunately, we have a useful corollary giving sufficient conditions for

convergence. The corollary results from the observation that for some matrix norm IGII which is

consistent' 9 with a vector norm Ilvii,

Jlelk1JJ <_ JIG kII Ilelo'll _< JIlG Ilk lle'°)ll .  )

Hence we obtain the following corollary to Theorem 1.

Corollary I - sufficient condition for convergence of the stationary iterative method

If IGII < 1, then the stationary iterative method (7) is convergent.20

Suppose that the stationary iterative method is convergent. It can be shown (see [Varga, 19621 or

[Young, 1971]) that

lim JIG kII.,' / k = p(G).
k 00

Hence, from (9) we have that, for large k,

Ile )ILZ . p(G)kIle(O)IIL,

Thus, in a certain sense, p(G) is a measure of the rate of convergence of the iterative method and

therefore, like convergence itself, depends on the eigenvalues of G.

We illustrate an application of Corollary 1 in obtaining a simple but important sufficient

condition for the convergence of Jacobi relaxation. The Jacobi iteration matrix Gj consists of

the elements

a,'gj = , i j;tj
O. ---- 0.

Therefore the L,: norm of G is given by

t'-I INa

sIt can be shown (see e.g. [Varga, 1962]) that the theorem holds without the independence assumption

on the eigenvectors.
1If a matrix norm and a vector norm satisfy the relation IlAull < hJAil hul for any A and u, then the

two norms are said to be consistent jDahlquist and Bjiirck, 1974, pg. 175].
2°The condition is not a necessary one because we can have the case that uIGII > I when p(G) < 1.
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Clearly, if la > -1 ,: <N jaiij, IjGjill < 1, and Jacobi relaxation will converge by corollary
3i

1. A much more general result may be obtained. We begin by defining two important properties

that A may possess.

Definition 1 - (weakly) diagonally dominant matrix

A matrix A of order N is said to be diagonally dominant if

laii > aij 1,  1 < i < N.

The matrix is said to be weakly diagonally dominant if the > relation in the above inequality can

be replaced by in some, but not all, of the equations.

Definition 2 - irreducible matrix

A matrix A of order N is irrelucible if and only if N = 1, or if N > 1 and for any i

and j such that 1 < i,j N and i $ j either a,j - 0, or there exist il, i 2, ... ,ik such that
aw,,,,ai ,, 2

... a i
,
,j  

4 o.
2 1

It can be shown that if A is irreducible and has weak diagonal dominance, then it is nonsingular,

and if in addition it is symmetric and has non-negative diagonal elements, then it is positive

definite. The general theorem is given next (For a proof see [Varga, 1962, pg. 73]).

Theorem 2 - sufficient conditions for convergence of the Jacobi and Gauss-Seidel relaxation

Let A be either a diagonally dominant or an irreducible and weakly diagonally dominant

matrix. Then, both the associated Jacobi and Gauss-Seidel relaxation methods of (4) and (5) are

convergent.

Next, we turn our attention to the successive overrelaxation method. Since the inverse of a

triangular matrix is also a triangular matrix, and its determinant is equal to the product of its

diagonal elements, we have

det(G ) = detf(I - wD - L)- '] det[(1 - w)l + wD-U] (1 - w)N.

Since det(G,) - NI X,, it follows that

N
max Jj > 1 - W

which, by theorem 1, leads to the following.

I h-,rr-. J ronvergence of the SOR method

p(G) > w- 11

e...,,me -stu wain introduced by Frobenius for matrices which (informally speaking)
.•.n. wbose volut,ons cannot be reduced to the sc~jtion of two systems of

.,-ucibi- 'A'r -e when discretising boundary value problems over[ __ __ _ __ "-- --
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therefore the successive overrelazation method (6) can converge only if 0 < w < 2.

A set of necessary and sufficient conditions for convergence for the successive overrelaxation

method are stated in the following theorem.

Theorem 4 - convergence of SOR method for symmetric, positive definite A

I/ A is real, symmetric matriz with posihve diagonal elements, then the successive overrelazation

method (5) is convergent %f and only %f 0 < w < 2 and A is positive definite.

The same conditions for convergence hold for the Gauss-Seidel method :ince, by definition,

it is a special case of successive overrelaxation.

Corollary 2 -- convergence of Gauss-Seidel relaxation for symmetric, positive definite A

If A is a symmetric matrix with positive diagonal elements, then the Gatss-Seldel method is

convergent if and only if A is positive definite.

It is important to note that the same statement cannot be made about the Jacobi method.

B.2. Basic Gradient Methods

In this section we investigate a class of iterative methods which are naturally associated

with optimization theory. These are the so called gradient methods which, in their full generality,

are iterative techniques for minimizing nonlinear functionals. They may also be thought of as

methods for solving systems of linear equations for the special case where the functional to be

minimized is a quadratic form.

Assume that A E RNN is symmetric. Now suppose that we attempt to solve the following

unconstrained minimization problem involving the quadratic form C(v)

=(u) = inf C(v) = (v,Av)- (f, v),
VER" 2

where (., .): %N x "N R denotes the familiar Euclidean inner product. From the well-known

theorem of optimization theory (see, e.g. [Luenberger, 19731), the gradient vector of E(u)

Ve(u) = Au - f,

vanishes at a minimum u and, moreover, the minimum exists and is unique if the Hessian matrix

I 8,tuu J "A.

Ouje~ui

is positive definite.

Thus, for symmetric, positive definite A, solving the minimisation problem is equivalent

to solving the system of linear equations Au = f and, consequently, relaxation methods can be

thought of as being methods for descending to the minimum u of a quadratic functional.
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Gradient Descent

Consider the iterative method u(k+l) - u(k) .- a(k)d(k), where at each iteration, we take

a step in the direction of the vector d(k). To minimize 6(u) quickly, we should move in the

direction of steepest descent, which is given by the negative gradient; that is, d(k) - e ( u (k))

f- Au(k ) 
- r(k) , where r (k ) is the familiar residual vector. Thus we obtain the nonstationary

iterative method defined by

u(k+ i) = u(k) + a(k)r(k). (10)

It seems reasonable to choose the step size at each iteration a(k) so as to minimive (u(#)- a(k)r(k)).

The appropriate value can easily be shown to be

a(k) : (r(k), r(k)) (11)

(r(ki, Ar(k))'

On the other hand, if we fix a(k) - a for all iterations, then (10) becomes

U(k ' - )  (I- aA)u(k) + Of, (12)

which can be identified as a stationary iterative method with iteration matrix G = I - aA.

The Conjugate Gradient Method

Hestenes and Stiefel 119521 introduced the conjugate gradient method, a modification of the

method of gradient descent. The method is based on determining vectors d(°),d0),...,d{"-)

which are pairwise conjugate in the sense that (d('1,Ad(JI) = 0 for i $ j. The ease in applying

the method derives from the fact that these vectors may also be determined iteratively. With the

residual vector at Lhe kth iteration given by r(k) - f - Auil) and with do ) = r10 ) , the algorithm

for determining the d1") and u(") is as follows.

Ju u(uI )4- - ' ) , 0< k < N- 1;

d(kJ) - r(k) - r,Ad(':1 d( - ),  I < k < N - 1.

Conj,Ig;Lcy of the vectors can be verified along with the fact that (r('), r(')) -= 0 for t y j. This

implies that rf} 
= 0 for some k < N. Therefore, in the absence of roundoff errors, the method

converges in at most N iterations. Of course, this property is of no real value to us because we

must dcal with cases where N is very large. Nevertheless, for N large, typically u~k ) = u for

k < N and the algorithm may be used in the iterative spirit. The conjugate gradient method is

certainfl_ the most expensive of the algorithms discussed both in terms of space (since the vectors

uIk), d1'), r(k), and AdPk) must be stored) and in terms of the number of operations to complete

one iteration. While it is true that, for model problems, the number of iterations required to

reduce the error by a specified amount is usually considerably less than for the other methods, the

conjugate gradien t method seems o exceed at least the successive overrelaxation method (with

optimal w) in total number of operations required [see e.g. Young and Gregory, 1973, pg. 1071].
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Convergence and Comparisons to Relaxation

It is easy to show [Luenberger, 1973] that gradient descent (10) with (11) is convergent for

a positive definite matrix A to the solution u = A-'f where the quadratic form " is minimized.

On the other hand, we must be a little more careful with the fixed-a descent algorithm (12). The

eigenvalues X, of its iteration matrix G are related to the eigenvalues V, of A, all of which are

positive (since A is positive definite), by X, ==1 - aX,. Therefore, according to theorem 1, we

obtain the following.

Theorem 5 - necessary and sufficient condition for convergence

For a positive definite matrix A, the fixed-a method of equation (12) is convergent if and

only if 0 < a < 14)"

Of course, convergence is quickest for that a which minimizes p(G), which often cannot be

determined in practice.

By comparing (12) with the Jacobi method (3), we can convince ourselves that the two

methods become identical when A is positive definite, has identical elements on its main diagonal

(i.e. D = al), and a - 1/a. Moreover, Forsythe and Wasow [1.960, pg. 239] (see also [Milne,

1970]) show that the Gauss-Seidel and successive overrelaxation methods are also subject to

interpretations as descent methods. In these cases, however, we have not one, but a set of direction

vectors which turn out to be x,, the coordinate unit vectors of NN. During each iteration, we

take a sequence of steps of different sizes in each of these directions. The step sizes are such that

E(ul') + o(k)x,) is minimized, and are given by aCk) - /a,, for the Gauss-Seidel method and(ik) _ k) )i th ih
at, wr, /a,, for the successive overrelaxation method, where rk) is the ,th element of the

residual vector at iteration k.

The computation of an optimal a(k) at each iteration according to (11) requires that 00

be stored and that Ar (*) be evaluated. This doubles the amount of work required per iteration

in comparison with a fixed-a algorithm or Jacobi relaxation. This raises the question: which is

better in the long run; N iterations of gradient descent, or 2N iterations of the fixed-af or Jacobi

relaxation? To quantitatively decide the issue, a convergence analysis ought to be attempted. This

is problem-dependent and is generally difficult to do, so we will simply note that Forsythe and

Wasow [1960, pg. 225] do not recommend the optimisation of a and, moreover, refer to a result by

Stiefel [1955] indicating that it is, at best, a short-sighted strategy. Interestingly enough, Grimson

[1981a] used the optimal-a algorithm in his implementation of the surface interpolation algorithm

(with a minor modification to make certain that the fixed constraints are never modified, thus,

in effect, treating them as essential boundary conditions). Considering the statements of Forsythe

and Wasow, it is not surprising that extremely slow convergence was observed in spite of the

extra work expended at each iteration to compute the optimal a.
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C. LOCAL FOURIER ANALYSIS OF RELAXATION

In this appendix, we present the details of a local Fourier analysis of the Gauss-Seidel

relaxation and obtain the smoothing factor for this method. The analysis involves studying

separately the convergence of the high-frequency Fourier components. Since these components

have short coupling ranges, we can perform the analysis in the interior of fl, ignoring the effects

of the boundary and the constraints.

According to equation (4.9), the minimizing displacement u,,j at an interior node (i,j) is

related to the other nodes by

20u,,, - 8(u,-l., + u,+l,, + u,,- 1 + ut,,+)
+ 2(u,_j,,_j + u,+j,j_, + u,_I,,+, + u,+,,, ) O

+ l(u,- 2 ,j + U,+2,1 + U,j.-2 + U,j+2) = 0

(for convenience, we have suppressed the superscripts h). According to the discussion in Appendix

B, at iteration k of the Gauss-Seidel relaxation method, v k ) is replaced by a new value v! k+1)

such that

20v,,~t -8 i t-1,+1) 3k v(k4-) .(k)

k+1 k+i) k+1) (k) (k)

+ 2 , v1,J 1 + vt+.,- + v-+ 1  ' +v,+,a +) (2)

k
( +

l
)  

V
(
k) k+1) ()

+ I (V v, + 2 ,, + V,- 2 + v ,,,+2 0

The errors of the approximation at iteration k and iteration k + 1 are given by

(k) k- v!) and -++) = - v
(
k
+
l
)

t,, t3 -t, 3  and ,3 = U,,3 - ,

respectively. Subtracting (2) form (1), we obtain

20 e! k+) - 8(e(k+) +(k) + (k+i) + (k)

+ e,.- ,3 .-i + ),-+ , I- + -, + e )(

l/e( l) 'k) .(k+1) .(k) O
+ I ,-, + e+2, + e ,a- + -2 ,+2) = 0,

Suppose that the error consists of only a single spatial Fourier component G1 =wj, " .Then the

errors at node (i,j) before and after the kth iteration are given by

e(k) - A )e ' (-1 +i+21) and e,(k+ ) = A +te( -J) (4)

respectively, where & = V"1,

Substituting (4) into (3), dividing through by e'( WII
+ '3j), and collecting terms pertaining to

the same itcration, we vbtain
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+: ( e ""') + 2(et(wl +w3) + eLVWw + (
203) cLw)

+ AJ+I)(20 - 8(c-,w. ± -,w) + 2((w-jwa) + e(- -- )) + (e- 2' + -24W2) 0i.

The amplification of the 0 component is then given by

AGS(Q)

8(tw + e""a) 2(&(wl,+w3) + e4 -- +w2)) - (eiwi + 2tw2)

20 - 8(e-,-, + e-lw) + 2(e,(w-*) + e&(-w-w2)) + (C-2tw + -2w) [
Let I01 = maX(iWI I W2 1). The Gauss-Seidel smoothing factor is defined as the smallest

amplification attained for a high-frequency component of the error; that is, a component which

is visible on the fine grid, but is aliased on the coarse grid:

Pas= max #os(O).

Evaluating this expression numerically, we obtain PA$Gs 0.8 (for w, = 1.6 and W2 - 0.3).
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